The multi-armed bandit (MAB) problem is a classical problem that models sequential decision-making under uncertainty in reinforcement learning. In this study, we propose a new generalized upper confidence bound (UCB) algorithm (GWA-UCB1) by extending UCB1, which is a representative algorithm for MAB problems, using generalized weighted averages, and present an effective algorithm for various problem settings. GWA-UCB1 is a two-parameter generalization of the balance between exploration and exploitation in UCB1 and can be implemented with a simple modification of the UCB1 formula. Therefore, this algorithm can be easily applied to UCB-based reinforcement learning models. In preliminary experiments, we investigated the optimal parameters of a simple generalized UCB1 (G-UCB1), prepared for comparison and GWA-UCB1, in a stochastic MAB problem with two arms. Subsequently, we confirmed the performance of the algorithms with the investigated parameters on stochastic MAB problems when arm reward probabilities were sampled from uniform or normal distributions and on survival MAB problems assuming more realistic situations. GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at //github.com/manome/python-mab.
Enhancing the zero-shot performance of instruction-following models requires heavy computation, either by scaling the total number of training datasets or the model size. In this work, we explore how retrieval of soft prompts obtained through prompt tuning can efficiently assist hard prompts in zero-shot task generalization. Specifically, we train soft prompt embeddings for each prompt through prompt tuning, store the samples of the training instances mapped with the prompt embeddings, and retrieve the corresponding prompt embedding of the training instance closest to the query instance during inference. While only adding 0.007% additional parameters, retrieval of soft prompt enhances the performance of T0 on unseen tasks by outperforming it on 10 out of 11 datasets as well as improving the mean accuracy of T0 on BIG-bench benchmark by 2.39% points. Also, we report an interesting finding that retrieving source embeddings trained on similar answer choice formats is more important than those on similar task types.
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks. Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly. Despite the empirical success, general theoretical guarantees of convergence on this method remain an open question. In this paper, we present a unifying framework for heterogeneous FL algorithms with online model extraction and provide a general convergence analysis. In particular, we prove that under certain sufficient conditions and for both IID and non-IID data, these algorithms converge to a stationary point of standard FL for general smooth cost functions. Moreover, we illuminate two key factors impacting its convergence: model-extraction noise and minimum coverage index, advocating a joint design of local model extraction for efficient heterogeneous FL.
To leverage data for the sufficient training of machine learning (ML) models from multiple parties in a confidentiality-preserving way, various collaborative distributed ML (CDML) system designs have been developed, for example, to perform assisted learning, federated learning, and split learning. CDML system designs show different traits, including high agent autonomy, ML model confidentiality, and fault tolerance. Facing a wide variety of CDML system designs with different traits, it is difficult for developers to design CDML systems with traits that match use case requirements in a targeted way. However, inappropriate CDML system designs may result in CDML systems failing their envisioned purposes. We developed a CDML design toolbox that can guide the development of CDML systems. Based on the CDML design toolbox, we present CDML system archetypes with distinct key traits that can support the design of CDML systems to meet use case requirements.
We study the problem of designing mechanisms when agents' valuation functions are drawn from unknown and correlated prior distributions. In particular, we are given a prior distribution $\D$, and we are interested in designing a (truthful) mechanism that has good performance for all ``true distributions'' that are close to $\D$ in Total Variation (TV) distance. We show that DSIC and BIC mechanisms in this setting are strongly robust with respect to TV distance, for any bounded objective function $\Ocal$, extending a recent result of Brustle et al. (\cite{Brustle2020}, EC 2020). At the heart of our result is a fundamental duality property of total variation distance. As direct applications of our result, we (i) demonstrate how to find approximately revenue-optimal and approximately BIC mechanisms for weakly dependent prior distributions; (ii) show how to find correlation-robust mechanisms when only ``noisy'' versions of marginals are accessible, extending recent results of Bei et. al. (\cite{bei2019correlation}, SODA 2019); (iii) prove that prophet-inequality type guarantees are preserved for correlated priors, recovering a variant of a result of D{\"u}tting and Kesselheim (\cite{Dutting19}, EC 2019); (iv) give a new necessary condition for a correlated distribution to witness an infinite separation in revenue between simple and optimal mechanisms, complementing recent results of Psomas et al. (\cite{psomas2022infinite}, NeurIPS 2022); (v) give a new condition for simple mechanisms to approximate revenue-optimal mechanisms for the case of a single agent whose type is drawn from a correlated distribution that can be captured by a Markov Random Field, complementing recent results of Cai and Oikonomou (\cite{Cai21}, EC 2021).
Recent advances in artificial intelligence (AI) have underscored the need for explainable AI (XAI) to support human understanding of AI systems. Consideration of human factors that impact explanation efficacy, such as mental workload and human understanding, is central to effective XAI design. Existing work in XAI has demonstrated a tradeoff between understanding and workload induced by different types of explanations. Explaining complex concepts through abstractions (hand-crafted groupings of related problem features) has been shown to effectively address and balance this workload-understanding tradeoff. In this work, we characterize the workload-understanding balance via the Information Bottleneck method: an information-theoretic approach which automatically generates abstractions that maximize informativeness and minimize complexity. In particular, we establish empirical connections between workload and complexity and between understanding and informativeness through human-subject experiments. This empirical link between human factors and information-theoretic concepts provides an important mathematical characterization of the workload-understanding tradeoff which enables user-tailored XAI design.
Recent advancements in understanding the impulse response of the first arrival position (FAP) channel in molecular communication (MC) have illuminated its Shannon capacity. While Lee et al. shed light on FAP channel capacities with vertical drifts, the zero-drift scenario remains a conundrum, primarily due to the challenges associated with the heavy-tailed Cauchy distributions whose first and second moments do not exist, rendering traditional mutual information constraints ineffective. This paper unveils a novel characterization of the zero drift FAP channel capacity for both 2D and 3D. Interestingly, our results reveal a 3D FAP channel capacity that is double its 2D counterpart, hinting at a capacity increase with spatial dimension growth. Furthermore, our approach, which incorporates a modified logarithmic constraint and an output signal constraint, offers a simplified and more intuitive formula (similar to the well-known Gaussian case) for estimating FAP channel capacity.
The goal of motion understanding is to establish a reliable mapping between motion and action semantics, while it is a challenging many-to-many problem. An abstract action semantic (i.e., walk forwards) could be conveyed by perceptually diverse motions (walk with arms up or swinging), while a motion could carry different semantics w.r.t. its context and intention. This makes an elegant mapping between them difficult. Previous attempts adopted direct-mapping paradigms with limited reliability. Also, current automatic metrics fail to provide reliable assessments of the consistency between motions and action semantics. We identify the source of these problems as the significant gap between the two modalities. To alleviate this gap, we propose Kinematic Phrases (KP) that take the objective kinematic facts of human motion with proper abstraction, interpretability, and generality characteristics. Based on KP as a mediator, we can unify a motion knowledge base and build a motion understanding system. Meanwhile, KP can be automatically converted from motions and to text descriptions with no subjective bias, inspiring Kinematic Prompt Generation (KPG) as a novel automatic motion generation benchmark. In extensive experiments, our approach shows superiority over other methods. Our code and data would be made publicly available at //foruck.github.io/KP.
The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains, diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based tools and applications has seen exponential growth and relevant papers are published across the computer graphics, computer vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview important aspects of these generative AI tools, including personalization, conditioning, inversion, among others. Moreover, we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore this exciting topic for researchers, artists, and practitioners alike.
Traumatic brain injury (TBI) can cause cognitive, communication, and psychological challenges that profoundly limit independence in everyday life. Conversational Agents (CAs) can provide individuals with TBI with cognitive and communication support, although little is known about how they make use of CAs to address injury-related needs. In this study, we gave nine adults with TBI an at-home CA for four weeks to investigate use patterns, challenges, and design requirements, focusing particularly on injury-related use. The findings revealed significant gaps between the current capabilities of CAs and accessibility challenges faced by TBI users. We also identified 14 TBI-related activities that participants engaged in with CAs. We categorized those activities into four groups: mental health, cognitive activities, healthcare and rehabilitation, and routine activities. Design implications focus on accessibility improvements and functional designs of CAs that can better support the day-to-day needs of people with TBI.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.