亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To leverage data for the sufficient training of machine learning (ML) models from multiple parties in a confidentiality-preserving way, various collaborative distributed ML (CDML) system designs have been developed, for example, to perform assisted learning, federated learning, and split learning. CDML system designs show different traits, including high agent autonomy, ML model confidentiality, and fault tolerance. Facing a wide variety of CDML system designs with different traits, it is difficult for developers to design CDML systems with traits that match use case requirements in a targeted way. However, inappropriate CDML system designs may result in CDML systems failing their envisioned purposes. We developed a CDML design toolbox that can guide the development of CDML systems. Based on the CDML design toolbox, we present CDML system archetypes with distinct key traits that can support the design of CDML systems to meet use case requirements.

相關內容

 系統設計是新系統的物理設計階段。根據系統分析階段所確定的新系統的邏輯模型、功能要求,在用戶提供的環境條件下,設計出一個能在計算機網絡環境上實施的方案,即建立新系統的物理模型。

While data selection methods have been studied extensively in active learning, data pruning, and data augmentation settings, there is little evidence for the efficacy of these methods in industry scale settings, particularly in low-resource languages. Our work presents ways of assessing prospective training examples in those settings for their "usefulness" or "difficulty". We also demonstrate how these measures can be used in selecting important examples for training supervised machine learning models. We primarily experiment with entropy and Error L2-Norm (EL2N) scores. We use these metrics to curate high quality datasets from a large pool of \textit{Weak Signal Labeled} data, which assigns no-defect high confidence hypotheses during inference as ground truth labels. We then conduct training data augmentation experiments using these de-identified datasets and demonstrate that score-based selection can result in a 2% decrease in semantic error rate and 4%-7% decrease in domain classification error rate when compared to the baseline technique of random selection.

A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.

Recent advancements in generative machine learning have enabled rapid progress in biological design tools (BDTs) such as protein structure and sequence prediction models. The unprecedented predictive accuracy and novel design capabilities of BDTs present new and significant dual-use risks. For example, their predictive accuracy allows biological agents, whether vaccines or pathogens, to be developed more quickly, while the design capabilities could be used to discover drugs or evade DNA screening techniques. Similar to other dual-use AI systems, BDTs present a wicked problem: how can regulators uphold public safety without stifling innovation? We highlight how current regulatory proposals that are primarily tailored toward large language models may be less effective for BDTs, which require fewer computational resources to train and are often developed in an open-source manner. We propose a range of measures to mitigate the risk that BDTs are misused, across the areas of responsible development, risk assessment, transparency, access management, cybersecurity, and investing in resilience. Implementing such measures will require close coordination between developers and governments.

Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.

This work uses visual knowledge discovery in parallel coordinates to advance methods of interpretable machine learning. The graphic data representation in parallel coordinates made the concepts of hypercubes and hyperblocks (HBs) simple to understand for end users. It is suggested to use mixed and pure hyperblocks in the proposed data classifier algorithm Hyper. It is shown that Hyper models generalize decision trees. The algorithm is presented in several settings and options to discover interactively or automatically overlapping or non-overlapping hyperblocks. Additionally, the use of hyperblocks in conjunction with language descriptions of visual patterns is demonstrated. The benchmark data from the UCI ML repository were used to evaluate the Hyper algorithm. It enabled the discovery of mixed and pure HBs evaluated using 10-fold cross validation. Connections among hyperblocks, dimension reduction and visualization have been established. The capability of end users to find and observe hyperblocks, as well as the ability of side-by-side visualizations to make patterns evident, are among major advantages ofhyperblock technology and the Hyper algorithm. A new method to visualize incomplete n-D data with missing values is proposed, while the traditional parallel coordinates do not support it. The ability of HBs to better prevent both overgeneralization and overfitting of data over decision trees is demonstrated as another benefit of the hyperblocks. The features of VisCanvas 2.0 software tool that implements Hyper technology are presented.

This study employs machine learning models to predict the failure of Peer-to-Peer (P2P) lending platforms, specifically in China. By employing the filter method and wrapper method with forward selection and backward elimination, we establish a rigorous and practical procedure that ensures the robustness and importance of variables in predicting platform failures. The research identifies a set of robust variables that consistently appear in the feature subsets across different selection methods and models, suggesting their reliability and relevance in predicting platform failures. The study highlights that reducing the number of variables in the feature subset leads to an increase in the false acceptance rate while the performance metrics remain stable, with an AUC value of approximately 0.96 and an F1 score of around 0.88. The findings of this research provide significant practical implications for regulatory authorities and investors operating in the Chinese P2P lending industry.

Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learning and often achieves better generalization performance than SGD. However, existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization. In this paper, we study the generalization of ASGD for overparameterized linear regression, which is possibly the simplest setting of learning with overparameterization. We establish an instance-dependent excess risk bound for ASGD within each eigen-subspace of the data covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the subspace of small eigenvalues, exhibiting a faster rate of exponential decay for bias error, while in the subspace of large eigenvalues, its bias error decays slower than SGD; and (ii) the variance error of ASGD is always larger than that of SGD. Our result suggests that ASGD can outperform SGD when the difference between the initialization and the true weight vector is mostly confined to the subspace of small eigenvalues. Additionally, when our analysis is specialized to linear regression in the strongly convex setting, it yields a tighter bound for bias error than the best-known result.

Adversarial machine learning (AML) studies attacks that can fool machine learning algorithms into generating incorrect outcomes as well as the defenses against worst-case attacks to strengthen model robustness. Specifically for image classification, it is challenging to understand adversarial attacks due to their use of subtle perturbations that are not human-interpretable, as well as the variability of attack impacts influenced by diverse methodologies, instance differences, and model architectures. Through a design study with AML learners and teachers, we introduce AdvEx, a multi-level interactive visualization system that comprehensively presents the properties and impacts of evasion attacks on different image classifiers for novice AML learners. We quantitatively and qualitatively assessed AdvEx in a two-part evaluation including user studies and expert interviews. Our results show that AdvEx is not only highly effective as a visualization tool for understanding AML mechanisms, but also provides an engaging and enjoyable learning experience, thus demonstrating its overall benefits for AML learners.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司