亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We are interested in numerically solving a transitional model derived from the Bloch model. The Bloch equation describes the time evolution of the density matrix of a quantum system forced by an electromagnetic wave. In a high frequency and low amplitude regime, it asymptotically reduces to a non-stiff rate equation. As a middle ground, the transitional model governs the diagonal part of the density matrix. It fits in a general setting of linear problems with a high-frequency quasi-periodic forcing and an exponentially decaying forcing. The numerical resolution of such problems is challenging. Adapting high-order averaging techniques to this setting, we separate the slow (rate) dynamics from the fast (oscillatory and decay) dynamics to derive a new micro-macro problem. We derive estimates for the size of the micro part of the decomposition, and of its time derivatives, showing that this new problem is non-stiff. As such, we may solve this micro-macro problem with uniform accuracy using standard numerical schemes. To validate this approach, we present numerical results first on a toy problem and then on the transitional Bloch model.

相關內容

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

Dye experimentation is a widely used method in experimental fluid mechanics for flow analysis or for the study of the transport of particles within a fluid. This technique is particularly useful in biomedical diagnostic applications ranging from hemodynamic analysis of cardiovascular systems to ocular circulation. However, simulating dyes governed by convection-diffusion partial differential equations (PDEs) can also be a useful post-processing analysis approach for computational fluid dynamics (CFD) applications. Such simulations can be used to identify the relative significance of different spatial subregions in particular time intervals of interest in an unsteady flow field. Additionally, dye evolution is closely related to non-discrete particle residence time (PRT) calculations that are governed by similar PDEs. This contribution introduces a pseudo-spectral method based on Fourier continuation (FC) for conducting dye simulations and non-discrete particle residence time calculations without numerical diffusion errors. Convergence and error analyses are performed with both manufactured and analytical solutions. The methodology is applied to three distinct physical/physiological cases: 1) flow over a two-dimensional (2D) cavity; 2) pulsatile flow in a simplified partially-grafted aortic dissection model; and 3) non-Newtonian blood flow in a Fontan graft. Although velocity data is provided in this work by numerical simulation, the proposed approach can also be applied to velocity data collected through experimental techniques such as from particle image velocimetry.

A robust nonconforming mixed finite element method is developed for a strain gradient elasticity (SGE) model. In two and three dimensional cases, a lower order $C^0$-continuous $H^2$-nonconforming finite element is constructed for the displacement field through enriching the quadratic Lagrange element with bubble functions. This together with the linear Lagrange element is exploited to discretize a mixed formulation of the SGE model. The robust discrete inf-sup condition is established. The sharp and uniform error estimates with respect to both the small size parameter and the Lam\'{e} coefficient are achieved, which is also verified by numerical results. In addition, the uniform regularity of the SGE model is derived under two reasonable assumptions.

We present here a new splitting method to solve Lyapunov equations in a Kronecker product form. Although this resulting matrix is of order $n^2$, each iteration demands two operations with the matrix $A$: a multiplication of the form $(A-\sigma I) \tilde{B}$ and a inversion of the form $(A-\sigma I)^{-1}\tilde{B}$. We see that for some choice of a parameter the iteration matrix is such that all their eigenvalues are in absolute value less than 1. Moreover we present a theorem that enables us to get a good starting vector for the method.

In this paper we study an inverse boundary value problem for Maxwell's equations. The goal is to reconstruct perturbations in the refractive index of the medium inside an object from the knowledge of the tangential trace of an electric field on a part of the boundary of the domain. We first provide a uniqueness result for this inverse problem. Then, we propose a complete procedure to reconstruct numerically the perturbations, based on the minimization of a cost functional involving an iterated sensitivity equation.

We present a novel stabilized isogeometric formulation for the Stokes problem, where the geometry of interest is obtained via overlapping NURBS (non-uniform rational B-spline) patches, i.e., one patch on top of another in an arbitrary but predefined hierarchical order. All the visible regions constitute the computational domain, whereas independent patches are coupled through visible interfaces using Nitsche's formulation. Such a geometric representation inevitably involves trimming, which may yield trimmed elements of extremely small measures (referred to as bad elements) and thus lead to the instability issue. Motivated by the minimal stabilization method that rigorously guarantees stability for trimmed geometries [1], in this work we generalize it to the Stokes problem on overlapping patches. Central to our method is the distinct treatments for the pressure and velocity spaces: Stabilization for velocity is carried out for the flux terms on interfaces, whereas pressure is stabilized in all the bad elements. We provide a priori error estimates with a comprehensive theoretical study. Through a suite of numerical tests, we first show that optimal convergence rates are achieved, which consistently agrees with our theoretical findings. Second, we show that the accuracy of pressure is significantly improved by several orders using the proposed stabilization method, compared to the results without stabilization. Finally, we also demonstrate the flexibility and efficiency of the proposed method in capturing local features in the solution field.

An unconventional approach is applied to solve the one-dimensional Burgers' equation. It is based on spline polynomial interpolations and Hopf-Cole transformation. Taylor expansion is used to approximate the exponential term in the transformation, then the analytical solution of the simplified equation is discretized to form a numerical scheme, involving various special functions. The derived scheme is explicit and adaptable for parallel computing. However, some types of boundary condition cannot be specified straightforwardly. Three test cases were employed to examine its accuracy, stability, and parallel scalability. In the aspect of accuracy, the schemes employed cubic and quintic spline interpolation performs equally well, managing to reduce the $\ell_{1}$, $\ell_{2}$ and $\ell_{\infty}$ error norms down to the order of $10^{-4}$. Due to the transformation, their stability condition $\nu \Delta t/\Delta x^2 > 0.02$ includes the viscosity/diffusion coefficient $\nu$. From the condition, the schemes can run at a large time step size $\Delta t$ even when grid spacing $\Delta x$ is small. These characteristics suggest that the method is more suitable for operational use than for research purposes.

Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.

A method of numerically solving the Maxwell equations is considered for modeling harmonic electromagnetic fields. The vector finite element method makes it possible to obtain a physically consistent discretization of the differential equations. However, solving large systems of linear algebraic equations with indefinite ill-conditioned matrices is a challenge. The high order of the matrices limits the capabilities of the Gaussian method to solve such systems, since this requires large RAM and much calculation. To reduce these requirements, an iterative preconditioned algorithm based on integral Laguerre transform in time is used. This approach allows using multigrid algorithms and, as a result, needs less RAM compared to the direct methods of solving systems of linear algebraic equations.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司