Natural language generation models are computer systems that generate coherent language when prompted with a sequence of words as context. Despite their ubiquity and many beneficial applications, language generation models also have the potential to inflict social harms by generating discriminatory language, hateful speech, profane content, and other harmful material. Ethical assessment of these models is therefore critical. But it is also a challenging task, requiring an expertise in several specialized domains, such as computational linguistics and social justice. While significant strides have been made by the research community in this domain, accessibility of such ethical assessments to the wider population is limited due to the high entry barriers. This article introduces a new tool to democratize and standardize ethical assessment of natural language generation models: Tool for Ethical Assessment of Language generation models (TEAL), a component of Credo AI Lens, an open-source assessment framework.
The FAIR principles for scientific data (Findable, Accessible, Interoperable, Reusable) are also relevant to other digital objects such as research software and scientific workflows that operate on scientific data. The FAIR principles can be applied to the data being handled by a scientific workflow as well as the processes, software, and other infrastructure which are necessary to specify and execute a workflow. The FAIR principles were designed as guidelines, rather than rules, that would allow for differences in standards for different communities and for different degrees of compliance. There are many practical considerations which impact the level of FAIR-ness that can actually be achieved, including policies, traditions, and technologies. Because of these considerations, obstacles are often encountered during the workflow lifecycle that trace directly to shortcomings in the implementation of the FAIR principles. Here, we detail some cases, without naming names, in which data and workflows were Findable but otherwise lacking in areas commonly needed and expected by modern FAIR methods, tools, and users. We describe how some of these problems, all of which were overcome successfully, have motivated us to push on systems and approaches for fully FAIR workflows.
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is rarely the case in real-world scenarios. Many control applications often exhibit tasks with similar but not identical dynamics which can be modeled as a latent variable. We introduce the Hidden Parameter Recurrent State Space Models (HiP-RSSMs), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors. We present a simple and effective way of learning and performing inference over this Gaussian graphical model that avoids approximations like variational inference. We show that HiP-RSSMs outperforms RSSMs and competing multi-task models on several challenging robotic benchmarks both on real-world systems and simulations.
Text-guided image generation models, such as DALL-E 2 and Stable Diffusion, have recently received much attention from academia and the general public. Provided with textual descriptions, these models are capable of generating high-quality images depicting various concepts and styles. However, such models are trained on large amounts of public data and implicitly learn relationships from their training data that are not immediately apparent. We demonstrate that common multimodal models implicitly learned cultural biases that can be triggered and injected into the generated images by simply replacing single characters in the textual description with visually similar non-Latin characters. These so-called homoglyph replacements enable malicious users or service providers to induce biases into the generated images and even render the whole generation process useless. We practically illustrate such attacks on DALL-E 2 and Stable Diffusion as text-guided image generation models and further show that CLIP also behaves similarly. Our results further indicate that text encoders trained on multilingual data provide a way to mitigate the effects of homoglyph replacements.
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
Generative models (e.g., GANs and diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a specific region of the generative model's output space or evenly over a range of characteristics. To allow efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of arbitrary off-the-shelf models. PromptGen defines control as an energy-based model (EBM) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. We demonstrate how PromptGen can control several generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, and NVAE) using various off-the-shelf models: (1) with the CLIP model, PromptGen can sample images guided by text, (2) with image classifiers, PromptGen can de-bias generative models across a set of attributes, and (3) with inverse graphics models, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. Our code is available at //github.com/ChenWu98/Generative-Visual-Prompt.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Attention is an increasingly popular mechanism used in a wide range of neural architectures. Because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures for natural language processing, with a focus on architectures designed to work with vector representation of the textual data. We discuss the dimensions along which proposals differ, the possible uses of attention, and chart the major research activities and open challenges in the area.