亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The gradient descent-ascent (GDA) algorithm has been widely applied to solve nonconvex minimax optimization problems. However, the existing GDA-type algorithms can only find first-order stationary points of the envelope function of nonconvex minimax optimization problems, which does not rule out the possibility to get stuck at suboptimal saddle points. In this paper, we develop Cubic-GDA -- the first GDA-type algorithm for escaping strict saddle points in nonconvex-strongly-concave minimax optimization. Specifically, the algorithm uses gradient ascent to estimate the second-order information of the minimax objective function, and it leverages the cubic regularization technique to efficiently escape the strict saddle points. Under standard smoothness assumptions on the objective function, we show that Cubic-GDA admits an intrinsic potential function whose value monotonically decreases in the minimax optimization process. Such a property leads to a desired global convergence of Cubic-GDA to a second-order stationary point at a sublinear rate. Moreover, we analyze the convergence rate of Cubic-GDA in the full spectrum of a gradient dominant-type nonconvex geometry. Our result shows that Cubic-GDA achieves an orderwise faster convergence rate than the standard GDA for a wide spectrum of gradient dominant geometry. Our study bridges minimax optimization with second-order optimization and may inspire new developments along this direction.

相關內容

Let $P$ be a set of points in $\mathbb{R}^d$, where each point $p\in P$ has an associated transmission range $\rho(p)$. The range assignment $\rho$ induces a directed communication graph $\mathcal{G}_{\rho}(P)$ on $P$, which contains an edge $(p,q)$ iff $|pq| \leq \rho(p)$. In the broadcast range-assignment problem, the goal is to assign the ranges such that $\mathcal{G}_{\rho}(P)$ contains an arborescence rooted at a designated node and whose cost $\sum_{p \in P} \rho(p)^2$ is minimized. We study trade-offs between the stability of the solution -- the number of ranges that are modified when a point is inserted into or deleted from $P$ -- and its approximation ratio. We introduce $k$-stable algorithms, which are algorithms that modify the range of at most $k$ points when they update the solution. We also introduce the concept of a stable approximation scheme (SAS). A SAS is an update algorithm that, for any given fixed parameter $\varepsilon>0$, is $k(\epsilon)$-stable and maintains a solution with approximation ratio $1+\varepsilon$, where the stability parameter $k(\varepsilon)$ only depends on $\varepsilon$ and not on the size of $P$. We study such trade-offs in three settings. - In $\mathbb{R}^1$, we present a SAS with $k(\varepsilon)=O(1/\varepsilon)$, which we show is tight in the worst case. We also present a 1-stable $(6+2\sqrt{5})$-approximation algorithm, a $2$-stable 2-approximation algorithm, and a $3$-stable $1.97$-approximation algorithm. - In $\mathbb{S}^1$ (where the underlying space is a circle) we prove that no SAS exists, even though an optimal solution can always be obtained by cutting the circle at an appropriate point and solving the resulting problem in $\mathbb{R}^1$. - In $\mathbb{R}^2$, we also prove that no SAS exists, and we present a $O(1)$-stable $O(1)$-approximation algorithm.

Improving sample efficiency has been a longstanding goal in reinforcement learning. This paper proposes $\mathtt{VRMPO}$ algorithm: a sample efficient policy gradient method with stochastic mirror descent. In $\mathtt{VRMPO}$, a novel variance-reduced policy gradient estimator is presented to improve sample efficiency. We prove that the proposed $\mathtt{VRMPO}$ needs only $\mathcal{O}(\epsilon^{-3})$ sample trajectories to achieve an $\epsilon$-approximate first-order stationary point, which matches the best sample complexity for policy optimization. The extensive experimental results demonstrate that $\mathtt{VRMPO}$ outperforms the state-of-the-art policy gradient methods in various settings.

In this article, we propose a new numerical method and its analysis to solve eigenvalue problems for self-adjoint Schr{\"o}dinger operators, by combining the Feshbach-Schur perturbation theory with the spectral Fourier discretization. In order to analyze the method, we establish an abstract framework of Feshbach-Schur perturbation theory with minimal regularity assumptions on the potential that is then applied to the setting of the new spectral Fourier discretization method. Finally, we present some numerical results that underline the theoretical findings.

We study the performance of the gradient play algorithm for stochastic games (SGs), where each agent tries to maximize its own total discounted reward by making decisions independently based on current state information which is shared between agents. Policies are directly parameterized by the probability of choosing a certain action at a given state. We show that Nash equilibria (NEs) and first-order stationary policies are equivalent in this setting, and give a local convergence rate around strict NEs. Further, for a subclass of SGs called Markov potential games (which includes the cooperative setting with identical rewards among agents as an important special case), we design a sample-based reinforcement learning algorithm and give a non-asymptotic global convergence rate analysis for both exact gradient play and our sample-based learning algorithm. Our result shows that the number of iterations to reach an $\epsilon$-NE scales linearly, instead of exponentially, with the number of agents. Local geometry and local stability are also considered, where we prove that strict NEs are local maxima of the total potential function and fully-mixed NEs are saddle points.

A key challenge in building theoretical foundations for deep learning is the complex optimization dynamics of neural networks, resulting from the high-dimensional interactions between the large number of network parameters. Such non-trivial dynamics lead to intriguing behaviors such as the phenomenon of "double descent" of the generalization error. The more commonly studied aspect of this phenomenon corresponds to model-wise double descent where the test error exhibits a second descent with increasing model complexity, beyond the classical U-shaped error curve. In this work, we investigate the origins of the less studied epoch-wise double descent in which the test error undergoes two non-monotonous transitions, or descents as the training time increases. By leveraging tools from statistical physics, we study a linear teacher-student setup exhibiting epoch-wise double descent similar to that in deep neural networks. In this setting, we derive closed-form analytical expressions for the evolution of generalization error over training. We find that double descent can be attributed to distinct features being learned at different scales: as fast-learning features overfit, slower-learning features start to fit, resulting in a second descent in test error. We validate our findings through numerical experiments where our theory accurately predicts empirical findings and remains consistent with observations in deep neural networks.

Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司