Since the advent of chatbots in the commercial sector, they have been widely employed in the customer service department. Typically, these commercial chatbots are retrieval-based, so they are unable to respond to queries absent in the provided dataset. On the contrary, generative chatbots try to create the most appropriate response, but are mostly unable to create a smooth flow in the customer-bot dialog. Since the client has few options left for continuing after receiving a response, the dialog becomes short. Through our work, we try to maximize the intelligence of a simple conversational agent so it can answer unseen queries, and generate follow-up questions or remarks. We have built a chatbot for a jewelry shop that finds the underlying objective of the customer's query by finding similarity of the input to patterns in the corpus. Our system features an audio input interface for clients, so they may speak to it in natural language. After converting the audio to text, we trained the model to extract the intent of the query, to find an appropriate response and to speak to the client in a natural human voice. To gauge the system's performance, we used performance metrics such as Recall, Precision and F1 score.
Sequence-to-Sequence Text-to-Speech architectures that directly generate low level acoustic features from phonetic sequences are known to produce natural and expressive speech when provided with adequate amounts of training data. Such systems can learn and transfer desired speaking styles from one seen speaker to another (in multi-style multi-speaker settings), which is highly desirable for creating scalable and customizable Human-Computer Interaction systems. In this work we explore one-to-many style transfer from a dedicated single-speaker conversational corpus with style nuances and interjections. We elaborate on the corpus design and explore the feasibility of such style transfer when assisted with Voice-Conversion-based data augmentation. In a set of subjective listening experiments, this approach resulted in high-fidelity style transfer with no quality degradation. However, a certain voice persona shift was observed, requiring further improvements in voice conversion.
To enable artificial intelligence in providing empathetic services, multimodal Emotion Recognition in Conversation (ERC) plays an influential role in the field of human-computer interaction and conversational robotics. Multimodal data modeling is an up-and-coming research area in recent years, which is inspired by human multi-sensory integration capabilities. Up until now, there are few studies on multimodal-based conversational emotion recognition. Most of existing Multimodal ERC methods do not model cross-modal interactions and are incapable of extracting inter-modal complementary information. Several graph-based approaches claim to capture inter-modal complementary information, but it is difficult to obtain optimal solution using graph-based models due to the heterogeneity of multimodal data. In this work, we introduce a Graph and Attention-based Two-stage Multi-source Information Fusion (GA2MIF) approach for multimodal fusion. Our GA2MIF focuses on contextual modeling and cross-modal modeling leveraging Multi-head Directed Graph ATtention networks (MDGATs) and Multi-head Pairwise Cross-modal ATtention networks (MPCATs), respectively. Extensive experiments on two common datasets show that proposed GA2MIF can effectively capture intra-modal local and long-range contextual information as well as inter-modal complementary information, and outperforms existing State-Of-The-Art (SOTA) baselines by an absolute margin.
In this paper, we propose an end-to-end sentiment-aware conversational agent based on two models: a reply sentiment prediction model, which leverages the context of the dialogue to predict an appropriate sentiment for the agent to express in its reply; and a text generation model, which is conditioned on the predicted sentiment and the context of the dialogue, to produce a reply that is both context and sentiment appropriate. Additionally, we propose to use a sentiment classification model to evaluate the sentiment expressed by the agent during the development of the model. This allows us to evaluate the agent in an automatic way. Both automatic and human evaluation results show that explicitly guiding the text generation model with a pre-defined set of sentences leads to clear improvements, both regarding the expressed sentiment and the quality of the generated text.
While rich, open-domain textual data are generally available and may include interesting phenomena (humor, sarcasm, empathy, etc.) most are designed for language processing tasks, and are usually in a non-conversational format. In this work, we take a step towards automatically generating conversational data using Generative Conversational Networks, aiming to benefit from the breadth of available language and knowledge data, and train open domain social conversational agents. We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset using automatic metrics and human evaluators. Our results show that for conversations without knowledge grounding, GCN can generalize from the seed data, producing novel conversations that are less relevant but more engaging and for knowledge-grounded conversations, it can produce more knowledge-focused, fluent, and engaging conversations. Specifically, we show that for open-domain conversations with 10\% of seed data, our approach performs close to the baseline that uses 100% of the data, while for knowledge-grounded conversations, it achieves the same using only 1% of the data, on human ratings of engagingness, fluency, and relevance.
Recommender systems are the algorithms which select, filter, and personalize content across many of the worlds largest platforms and apps. As such, their positive and negative effects on individuals and on societies have been extensively theorized and studied. Our overarching question is how to ensure that recommender systems enact the values of the individuals and societies that they serve. Addressing this question in a principled fashion requires technical knowledge of recommender design and operation, and also critically depends on insights from diverse fields including social science, ethics, economics, psychology, policy and law. This paper is a multidisciplinary effort to synthesize theory and practice from different perspectives, with the goal of providing a shared language, articulating current design approaches, and identifying open problems. It is not a comprehensive survey of this large space, but a set of highlights identified by our diverse author cohort. We collect a set of values that seem most relevant to recommender systems operating across different domains, then examine them from the perspectives of current industry practice, measurement, product design, and policy approaches. Important open problems include multi-stakeholder processes for defining values and resolving trade-offs, better values-driven measurements, recommender controls that people use, non-behavioral algorithmic feedback, optimization for long-term outcomes, causal inference of recommender effects, academic-industry research collaborations, and interdisciplinary policy-making.
Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fields due to their superior performance in relation modeling. In multimodal ERC, GNNs are capable of extracting both long-distance contextual information and inter-modal interactive information. Unfortunately, since existing methods such as MMGCN directly fuse multiple modalities, redundant information may be generated and heterogeneous information may be lost. In this work, we present a directed Graph based Cross-modal Feature Complementation (GraphCFC) module that can efficiently model contextual and interactive information. GraphCFC alleviates the problem of heterogeneity gap in multimodal fusion by utilizing multiple subspace extractors and Pair-wise Cross-modal Complementary (PairCC) strategy. We extract various types of edges from the constructed graph for encoding, thus enabling GNNs to extract crucial contextual and interactive information more accurately when performing message passing. Furthermore, we design a GNN structure called GAT-MLP, which can provide a new unified network framework for multimodal learning. The experimental results on two benchmark datasets show that our GraphCFC outperforms the state-of-the-art (SOTA) approaches.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports operators like subset, negation, preference and similarity, which are often found in recommendation questions. We train and compare traditional CRFs as well as bidirectional LSTM-based models for converting a question to its semantic representation. We extend these models to a semisupervised setting with partially labeled sequences gathered through crowdsourcing. We find that our best model performs semi-supervised training of BiDiLSTM+CRF with hand-designed features and CCM(Chang et al., 2007) constraints. Finally, in an end to end QA system, our answering component converts our question representation into queries fired on underlying knowledge sources. Our experiments on two different answer corpora demonstrate that our system can significantly outperform baselines with up to 20 pt higher accuracy and 17 pt higher recall.