亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider the joint beamforming and quantization problem in the cooperative cellular network, where multiple relay-like base stations (BSs) connected to the central processor (CP) via rate-limited fronthaul links cooperatively serve the users. This problem can be formulated as the minimization of the total transmit power, subject to all users' signal-to-interference-plus-noise-ratio (SINR) constraints and all relay-like BSs' fronthaul rate constraints. In this paper, we first show that there is no duality gap between the considered problem and its Lagrangian dual by showing the tightness of the semidefinite relaxation (SDR) of the considered problem. Then we propose an efficient algorithm based on Lagrangian duality for solving the considered problem. The proposed algorithm judiciously exploits the special structure of the Karush-Kuhn-Tucker (KKT) conditions of the considered problem and finds the solution that satisfies the KKT conditions via two fixed-point iterations. The proposed algorithm is highly efficient (as evaluating the functions in both fixed-point iterations are computationally cheap) and is guaranteed to find the global solution of the problem. Simulation results show the efficiency and the correctness of the proposed algorithm.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

PageRank is a fundamental property of graph and there have been plenty of PageRank algorithms. Generally, we consider undirected graph as a complicated directed graph. However, some properties of undirected graph, such as symmetry, are ignored when computing PageRank by existing algorithms. In this paper, we propose a parallel PageRank algorithm which is specially for undirected graph. We first demonstrate that the PageRank vector can be viewed as a linear combination of eigenvectors of probability transition matrix and the corresponding coefficients are the functions of eigenvalues. Then we introduce the Chebyshev polynomial approximation by which PageRank vector can be computed iteratively. Finally, we propose the parallel PageRank algorithm as the Chebyshev polynomial approximating algorithm(CPAA). Experimental results show that CPAA only takes 60% of iteration rounds of the power method and is at least 4 times faster than the power method.

In multiuser communication systems, user scheduling and beamforming design are two fundamental problems, which are usually investigated separately in the existing literature. In this work, we focus on the joint optimization of user scheduling and beamforming design with the goal of maximizing the set cardinality of scheduled users. Observing that this problem is computationally challenging due to the non-convex objective function and coupled constraints in continuous and binary variables. To tackle these difficulties, we first propose an iterative optimization algorithm (IOA) relying on the successive convex approximation and uplink-downlink duality theory. Then, motivated by IOA and graph neural networks, a joint user scheduling and power allocation network (JEEPON) is developed to address the investigated problem in an unsupervised manner. The effectiveness of IOA and JEEPON is verified by various numerical results, and the latter achieves a close performance but lower complexity compared with IOA and the greedy-based algorithm. Remarkably, the proposed JEEPON is also competitive in terms of the generalization ability in dynamic wireless network scenarios.

The distributed convex optimization problem over the multi-agent system is considered in this paper, and it is assumed that each agent possesses its own cost function and communicates with its neighbours over a sequence of time-varying directed graphs. However, due to some reasons there exist communication delays while agents receive information from other agents, and we are going to seek the optimal value of the sum of agents' loss functions in this case. We desire to handle this problem with the push-sum distributed dual averaging (PS-DDA) algorithm which is introduced in \cite{Tsianos2012}. It is proved that this algorithm converges and the error decays at a rate $\mathcal{O}\left(T^{-0.5}\right)$ with proper step size, where $T$ is iteration span. The main result presented in this paper also illustrates the convergence of the proposed algorithm is related to the maximum value of the communication delay on one edge. We finally apply the theoretical results to numerical simulations to show the PS-DDA algorithm's performance.

Reward is the driving force for reinforcement-learning agents. This paper is dedicated to understanding the expressivity of reward as a way to capture tasks that we would want an agent to perform. We frame this study around three new abstract notions of "task" that might be desirable: (1) a set of acceptable behaviors, (2) a partial ordering over behaviors, or (3) a partial ordering over trajectories. Our main results prove that while reward can express many of these tasks, there exist instances of each task type that no Markov reward function can capture. We then provide a set of polynomial-time algorithms that construct a Markov reward function that allows an agent to optimize tasks of each of these three types, and correctly determine when no such reward function exists. We conclude with an empirical study that corroborates and illustrates our theoretical findings.

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through an embedding method provides superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, most of the existing methods for network embedding only utilize topological information of a vertex, ignoring a rich set of nodal attributes (such as, user profiles of an online social network, or textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes into account both attributional and relational information entails a complete network information and could further enrich the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes; Besides, it utilizes Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node-pair and a dissimilar node-pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over the state-of-the-art existing methods.

This paper proposes a Reinforcement Learning (RL) algorithm to synthesize policies for a Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the property into a Limit Deterministic Buchi Automaton (LDBA), then construct a product MDP between the automaton and the original MDP. A reward function is then assigned to the states of the product automaton, according to accepting conditions of the LDBA. With this reward function, our algorithm synthesizes a policy that satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.

Mobile network that millions of people use every day is one of the most complex systems in real world. Optimization of mobile network to meet exploding customer demand and reduce CAPEX/OPEX poses greater challenges than in prior works. Actually, learning to solve complex problems in real world to benefit everyone and make the world better has long been ultimate goal of AI. However, application of deep reinforcement learning (DRL) to complex problems in real world still remains unsolved, due to imperfect information, data scarcity and complex rules in real world, potential negative impact to real world, etc. To bridge this reality gap, we propose a sim-to-real framework to direct transfer learning from simulation to real world without any training in real world. First, we distill temporal-spatial relationships between cells and mobile users to scalable 3D image-like tensor to best characterize partially observed mobile network. Second, inspired by AlphaGo, we introduce a novel self-play mechanism to empower DRL agents to gradually improve intelligence by competing for best record on multiple tasks, just like athletes compete for world record in decathlon. Third, a decentralized DRL method is proposed to coordinate multi-agents to compete and cooperate as a team to maximize global reward and minimize potential negative impact. Using 7693 unseen test tasks over 160 unseen mobile networks in another simulator as well as 6 field trials on 4 commercial mobile networks in real world, we demonstrate the capability of this sim-to-real framework to direct transfer the learning not only from one simulator to another simulator, but also from simulation to real world. This is the first time that a DRL agent successfully transfers its learning directly from simulation to very complex real world problems with imperfect information, complex rules, huge state/action space, and multi-agent interactions.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司