This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include standard average treatment effects used to compare one treatment relative to another, but also include parameters which may be of interest in the analysis of factorial designs. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic exactness of tests based on these estimators. In contrast, we show that, for two common testing procedures based on t-tests constructed from linear regressions, one test is generally conservative while the other generally invalid. We go on to apply our results to study the asymptotic properties of what we call "fully-blocked" 2^K factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design which stratifies the experimental sample into a finite number of "large" strata. A simulation study and empirical application illustrate the practical relevance of our results.
We propose a two-stage estimation procedure for a copula-based model with semi-competing risks data, where the non-terminal event is subject to dependent censoring by the terminal event, and both events are subject to independent censoring. Under a copula-based model, the marginal survival functions of individual event times are specified by semiparametric transformation models, and the dependence between the bivariate event times is specified by a parametric copula function. For the estimation procedure, in the first stage, the parameters associated with the marginal of the terminal event are estimated only using the corresponding observed outcomes, and in the second stage, the marginal parameters for the non-terminal event time and the copula parameter are estimated via maximizing a pseudo-likelihood function based on the joint distribution of the bivariate event times. We derived the asymptotic properties of the proposed estimator and provided an analytic variance estimator for inference. Through simulation studies, we showed that our approach leads to consistent estimates with less computational cost and more robustness compared to the one-stage procedure developed in Chen (2012), where all parameters were estimated simultaneously. In addition, our approach demonstrates more desirable finite-sample performances over another existing two-stage estimation method proposed in Zhu et al. (2021).
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters. We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters. Recognizing the computational constraints and trust issues associated with on-device computation, we propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center, where a decision is made to identify whether a potential transmitter is present, or not. To achieve this, we employ task-oriented communications, utilizing an encoder at the transmitter for joint source coding, channel coding, and modulation. This architecture efficiently transmits essential information of reduced dimension for object classification. Simultaneously, the transmitted signals may reflect off objects and return to the transmitter, allowing for the collection of target sensing data. Then the collected sensing data undergoes a second round of encoding at the transmitter, with the reduced-dimensional information communicated back to the fusion center through task-oriented communications. On the receiver side, a decoder performs the task of identifying a transmitter by fusing data received through joint sensing and task-oriented communications. The two encoders at the transmitter and the decoder at the receiver are jointly trained, enabling a seamless integration of image classification and wireless signal detection. Using AWGN and Rayleigh channel models, we demonstrate the effectiveness of the proposed approach, showcasing high accuracy in transmitter identification across diverse channel conditions while sustaining low latency in decision making.
We investigate unbiased high-dimensional mean estimators in differential privacy. We consider differentially private mechanisms whose expected output equals the mean of the input dataset, for every dataset drawn from a fixed bounded $d$-dimensional domain $K$. A classical approach to private mean estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise to it. In the first part of this paper, we study the optimal error achievable by a Gaussian noise mechanism for a given domain $K$ when the error is measured in the $\ell_p$ norm for some $p \ge 2$. We give algorithms that compute the optimal covariance for the Gaussian noise for a given $K$ under suitable assumptions, and prove a number of nice geometric properties of the optimal error. These results generalize the theory of factorization mechanisms from domains $K$ that are symmetric and finite (or, equivalently, symmetric polytopes) to arbitrary bounded domains. In the second part of the paper we show that Gaussian noise mechanisms achieve nearly optimal error among all private unbiased mean estimation mechanisms in a very strong sense. In particular, for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy introduces approximately at least as much error as the best Gaussian noise mechanism. We extend this result to local differential privacy, and to approximate differential privacy, but for the latter the error lower bound holds either for a dataset or for a neighboring dataset, and this relaxation is necessary.
We propose a simple and general framework for nonparametric estimation of heterogeneous treatment effects under fairness constraints. Under standard regularity conditions, we show that the resulting estimators possess the double robustness property. We use this framework to characterize the trade-off between fairness and the maximum welfare achievable by the optimal policy. We evaluate the methods in a simulation study and illustrate them in a real-world case study.
The advent of Industrial Internet of Things (IIoT) has imposed more stringent requirements on industrial software in terms of communication delay, scalability, and maintainability. Microservice architecture (MSA), a novel software architecture that has emerged from cloud computing and DevOps, presents itself as the most promising solution due to its independently deployable and loosely coupled nature. Currently, practitioners are inclined to migrate industrial legacy systems to MSA, despite numerous challenges it presents. In this paper, we propose an automated microservice decomposition method for extracting microservice candidates based on spectral graph theory to address the problems associated with manual extraction, which is time-consuming, labor intensive, and highly subjective. The method is divided into three steps. Firstly, static and dynamic analysis tools are employed to extract dependency information of the legacy system. Subsequently, information is transformed into a graph structure that captures inter-class structure and performance relationships in legacy systems. Finally, graph-based clustering algorithm is utilized to identify potential microservice candidates that conform to the principles of high cohesion and low coupling. Comparative experiments with state of-the-art methods demonstrate the significant advantages of our proposed method in terms of performance metrics. Moreover, Practice show that our method can yield favorable results even without the involvement of domain experts.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.