Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{//github.com/Kishor-Bhaumik/STLGRU}.
We propose a comprehensive dataset for object detection in diverse driving environments across 9 districts in Bangladesh. The dataset, collected exclusively from smartphone cameras, provided a realistic representation of real-world scenarios, including day and night conditions. Most existing datasets lack suitable classes for autonomous navigation on Bangladeshi roads, making it challenging for researchers to develop models that can handle the intricacies of road scenarios. To address this issue, the authors proposed a new set of classes based on characteristics rather than local vehicle names. The dataset aims to encourage the development of models that can handle the unique challenges of Bangladeshi road scenarios for the effective deployment of autonomous vehicles. The dataset did not consist of any online images to simulate real-world conditions faced by autonomous vehicles. The classification of vehicles is challenging because of the diverse range of vehicles on Bangladeshi roads, including those not found elsewhere in the world. The proposed classification system is scalable and can accommodate future vehicles, making it a valuable resource for researchers in the autonomous vehicle sector.
To enhance the performance and effect of AR/VR applications and visual assistance and inspection systems, visual simultaneous localization and mapping (vSLAM) is a fundamental task in computer vision and robotics. However, traditional vSLAM systems are limited by the camera's narrow field-of-view, resulting in challenges such as sparse feature distribution and lack of dense depth information. To overcome these limitations, this paper proposes a 360ORB-SLAM system for panoramic images that combines with a depth completion network. The system extracts feature points from the panoramic image, utilizes a panoramic triangulation module to generate sparse depth information, and employs a depth completion network to obtain a dense panoramic depth map. Experimental results on our novel panoramic dataset constructed based on Carla demonstrate that the proposed method achieves superior scale accuracy compared to existing monocular SLAM methods and effectively addresses the challenges of feature association and scale ambiguity. The integration of the depth completion network enhances system stability and mitigates the impact of dynamic elements on SLAM performance.
Low-rank compression, a popular model compression technique that produces compact convolutional neural networks (CNNs) with low rankness, has been well-studied in the literature. On the other hand, low-rank training, as an alternative way to train low-rank CNNs from scratch, has been exploited little yet. Unlike low-rank compression, low-rank training does not need pre-trained full-rank models, and the entire training phase is always performed on the low-rank structure, bringing attractive benefits for practical applications. However, the existing low-rank training solutions still face several challenges, such as a considerable accuracy drop and/or still needing to update full-size models during the training. In this paper, we perform a systematic investigation on low-rank CNN training. By identifying the proper low-rank format and performance-improving strategy, we propose ELRT, an efficient low-rank training solution for high-accuracy, high-compactness, low-rank CNN models. Our extensive evaluation results for training various CNNs on different datasets demonstrate the effectiveness of ELRT.
In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a Linear Non-Gaussian Acyclic Model (LiNGAM), encompassing both the causal ordering of variables and their respective connection strengths. However, LiNGAM can only deal with the finite-dimensional case. To expand this concept, we extend the notion of variables to encompass vectors and even functions, leading to the Functional Linear Non-Gaussian Acyclic Model (Func-LiNGAM). Our motivation stems from the desire to identify causal relationships in brain-effective connectivity tasks involving, for example, fMRI and EEG datasets. We demonstrate why the original LiNGAM fails to handle these inherently infinite-dimensional datasets and explain the availability of functional data analysis from both empirical and theoretical perspectives. {We establish theoretical guarantees of the identifiability of the causal relationship among non-Gaussian random vectors and even random functions in infinite-dimensional Hilbert spaces.} To address the issue of sparsity in discrete time points within intrinsic infinite-dimensional functional data, we propose optimizing the coordinates of the vectors using functional principal component analysis. Experimental results on synthetic data verify the ability of the proposed framework to identify causal relationships among multivariate functions using the observed samples. For real data, we focus on analyzing the brain connectivity patterns derived from fMRI data.
Demystifying interactions between temporal patterns of different scales is fundamental to precise long-range time series forecasting. However, previous works lack the ability to model high-order interactions. To promote more comprehensive pattern interaction modeling for long-range time series forecasting, we propose a Multi-Scale Hypergraph Transformer (MSHyper) framework. Specifically, a multi-scale hypergraph is introduced to provide foundations for modeling high-order pattern interactions. Then by treating hyperedges as nodes, we also build a hyperedge graph to enhance hypergraph modeling. In addition, a tri-stage message passing mechanism is introduced to aggregate pattern information and learn the interaction strength between temporal patterns of different scales. Extensive experiments on five real-world datasets demonstrate that MSHyper achieves state-of-the-art performance, reducing prediction errors by an average of 8.73% and 7.15% over the best baseline in MSE and MAE, respectively.
In the contemporary information era, significantly accelerated by the advent of Large-scale Language Models, the proliferation of scientific literature is reaching unprecedented levels. Researchers urgently require efficient tools for reading and summarizing academic papers, uncovering significant scientific literature, and employing diverse interpretative methodologies. To address this burgeoning demand, the role of automated scientific literature interpretation systems has become paramount. However, prevailing models, both commercial and open-source, confront notable challenges: they often overlook multimodal data, grapple with summarizing over-length texts, and lack diverse user interfaces. In response, we introduce an open-source multi-modal automated academic paper interpretation system (MMAPIS) with three-step process stages, incorporating LLMs to augment its functionality. Our system first employs the hybrid modality preprocessing and alignment module to extract plain text, and tables or figures from documents separately. It then aligns this information based on the section names they belong to, ensuring that data with identical section names are categorized under the same section. Following this, we introduce a hierarchical discourse-aware summarization method. It utilizes the extracted section names to divide the article into shorter text segments, facilitating specific summarizations both within and between sections via LLMs with specific prompts. Finally, we have designed four types of diversified user interfaces, including paper recommendation, multimodal Q\&A, audio broadcasting, and interpretation blog, which can be widely applied across various scenarios. Our qualitative and quantitative evaluations underscore the system's superiority, especially in scientific summarization, where it outperforms solutions relying solely on GPT-4.
Neural Architecture Search (NAS) effectively discovers new Convolutional Neural Network (CNN) architectures, particularly for accuracy optimization. However, prior approaches often require resource-intensive training on super networks or extensive architecture evaluations, limiting practical applications. To address these challenges, we propose MicroNAS, a hardware-aware zero-shot NAS framework designed for microcontroller units (MCUs) in edge computing. MicroNAS considers target hardware optimality during the search, utilizing specialized performance indicators to identify optimal neural architectures without high computational costs. Compared to previous works, MicroNAS achieves up to 1104x improvement in search efficiency and discovers models with over 3.23x faster MCU inference while maintaining similar accuracy
This paper considers outdoor terrain mapping using RGB images obtained from an aerial vehicle. While feature-based localization and mapping techniques deliver real-time vehicle odometry and sparse keypoint depth reconstruction, a dense model of the environment geometry and semantics (vegetation, buildings, etc.) is usually recovered offline with significant computation and storage. This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera keyframe maintained by a visual odometry algorithm. Given the estimated camera trajectory, the local meshes can be assembled into a global environment model to capture the terrain topology and semantics during online operation. A local mesh is reconstructed using an initialization and refinement stage. In the initialization stage, we estimate the mesh vertex elevation by solving a least squares problem relating the vertex barycentric coordinates to the sparse keypoint depth measurements. In the refinement stage, we associate 2D image and semantic features with the 3D mesh vertices using camera projection and apply graph convolution to refine the mesh vertex spatial coordinates and semantic features based on joint 2D and 3D supervision. Quantitative and qualitative evaluation using real aerial images show the potential of our method to support environmental monitoring and surveillance applications.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.