亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Laplacian matrix of a graph $G$ is $L(G)=D(G)-A(G)$, where $A(G)$ is the adjacency matrix and $D(G)$ is the diagonal matrix of vertex degrees. According to the Matrix-Tree Theorem, the number of spanning trees in $G$ is equal to any cofactor of an entry of $L(G)$. A rooted forest is a union of disjoint rooted trees. We consider the matrix $W(G)=I+L(G)$ and prove that the $(i,j)$-cofactor of $W(G)$ is equal to the number of spanning rooted forests of $G$, in which the vertices $i$ and $j$ belong to the same tree rooted at $i$. The determinant of $W(G)$ equals the total number of spanning rooted forests, therefore the $(i,j)$-entry of the matrix $W^{-1}(G)$ can be considered as a measure of relative ''forest-accessibility'' of vertex $i$ from $j$ (or $j$ from $i$). These results follow from somewhat more general theorems we prove, which concern weighted multigraphs. The analogous theorems for (multi)digraphs are also established. These results provide a graph-theoretic interpretation for the adjugate to the Laplacian characteristic matrix.

相關內容

We propose a PnP algorithm for a camera constrained to two-dimensional movement (applicable, for instance, to many wheeled robotics platforms). Leveraging this assumption allows performance improvements over 3D PnP algorithms due to the reduction in search space dimensionality. It also reduces the incidence of ambiguous pose estimates (as, in most cases, the spurious solutions fall outside the plane of movement). Our algorithm finds an approximate solution using geometric criteria and refines its prediction iteratively. We compare this algorithm to existing 3D PnP algorithms in terms of accuracy, performance, and robustness to noise.

We study the problem of performing face verification with an efficient neural model $f$. The efficiency of $f$ stems from simplifying the face verification problem from an embedding nearest neighbor search into a binary problem; each user has its own neural network $f$. To allow information sharing between different individuals in the training set, we do not train $f$ directly but instead generate the model weights using a hypernetwork $h$. This leads to the generation of a compact personalized model for face identification that can be deployed on edge devices. Key to the method's success is a novel way of generating hard negatives and carefully scheduling the training objectives. Our model leads to a substantially small $f$ requiring only 23k parameters and 5M floating point operations (FLOPS). We use six face verification datasets to demonstrate that our method is on par or better than state-of-the-art models, with a significantly reduced number of parameters and computational burden. Furthermore, we perform an extensive ablation study to demonstrate the importance of each element in our method.

We consider the problems of testing and learning quantum $k$-junta channels, which are $n$-qubit to $n$-qubit quantum channels acting non-trivially on at most $k$ out of $n$ qubits and leaving the rest of qubits unchanged. We show the following. 1. An $O\left(k\right)$-query algorithm to distinguish whether the given channel is $k$-junta channel or is far from any $k$-junta channels, and a lower bound $\Omega\left(\sqrt{k}\right)$ on the number of queries; 2. An $\widetilde{O}\left(4^k\right)$-query algorithm to learn a $k$-junta channel, and a lower bound $\Omega\left(4^k/k\right)$ on the number of queries. This gives the first junta channel testing and learning results, and partially answers an open problem raised by Chen et al. (2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in Montanaro and Osborne (2010). Besides, we introduce $\textit{Influence-Sample}$ to replace $\textit{Fourier-Sample}$ proposed in Atici and Servedio (2007). Our $\textit{Influence-Sample}$ includes only single-qubit operations and results in only constant-factor decrease in efficiency.

In this paper, we consider the problem of preprocessing a text $T$ of length $n$ and a dictionary $\mathcal{D}$ to answer multiple types of pattern queries. Inspired by [Charalampopoulos-Kociumaka-Mohamed-Radoszewski-Rytter-Wale\'n ISAAC 2019], we consider the Internal Dictionary, where the dictionary is interval in the sense that every pattern is given as a fragment of $T$. Therefore, the size of $\mathcal{D}$ is proportional to the number of patterns instead of their total length, which could be $\Theta(n \cdot |\mathcal{D}|)$. We propose a new technique to preprocess $T$ and organize the substring structure. In this way, we are able to develop algorithms to answer queries more efficiently than in previous works.

A pervasive methodological error is the post-hoc interpretation of $p$-values. A $p$-value $p$ is not the level at which we reject the null, it is the level at which we would have rejected the null had we chosen level $p$. We introduce the notion of a post-hoc $p$-value, that does admit this interpretation. We show that $p$ is a post-hoc $p$-value if and only if $1/p$ is an $e$-value. Among other things, this implies that the product of independent post-hoc $p$-values is a post-hoc $p$-value. Moreover, we generalize post-hoc validity to a sequential setting and find that $(p_t)_{t \geq 1}$ is a post-hoc anytime valid $p$-process if and only if $(1/p_t)_{t \geq 1}$ is an $e$-process. In addition, we show that if we admit randomized procedures, any non-randomized post-hoc $p$-value can be trivially improved. In fact, we find that this in some sense characterizes non-randomized post-hoc $p$-values. Finally, we argue that we need to go beyond $e$-values if we want to consider randomized post-hoc inference in its full generality.

We introduce Functional Diffusion Processes (FDPs), which generalize score-based diffusion models to infinite-dimensional function spaces. FDPs require a new mathematical framework to describe the forward and backward dynamics, and several extensions to derive practical training objectives. These include infinite-dimensional versions of Girsanov theorem, in order to be able to compute an ELBO, and of the sampling theorem, in order to guarantee that functional evaluations in a countable set of points are equivalent to infinite-dimensional functions. We use FDPs to build a new breed of generative models in function spaces, which do not require specialized network architectures, and that can work with any kind of continuous data. Our results on real data show that FDPs achieve high-quality image generation, using a simple MLP architecture with orders of magnitude fewer parameters than existing diffusion models.

Holographic MIMO (hMIMO) systems with a massive number of individually controlled antennas N make minimum mean square error (MMSE) channel estimation particularly challenging, due to its computational complexity that scales as $N^3$ . This paper investigates uniform linear arrays and proposes a low-complexity method based on the discrete Fourier transform (DFT) approximation, which follows from replacing the covariance matrix by a suitable circulant matrix. Numerical results show that, already for arrays with moderate size (in the order of tens of wavelengths), it achieves the same performance of the optimal MMSE, but with a significant lower computational load that scales as $N \log N$. Interestingly, the proposed method provides also increased robustness in case of imperfect knowledge of the covariance matrix.

We present a modular approach to \emph{reinforcement learning} (RL) in environments consisting of simpler components evolving in parallel. A monolithic view of such modular environments may be prohibitively large to learn, or may require unrealizable communication between the components in the form of a centralized controller. Our proposed approach is based on the assume-guarantee paradigm where the optimal control for the individual components is synthesized in isolation by making \emph{assumptions} about the behaviors of neighboring components, and providing \emph{guarantees} about their own behavior. We express these \emph{assume-guarantee contracts} as regular languages and provide automatic translations to scalar rewards to be used in RL. By combining local probabilities of satisfaction for each component, we provide a lower bound on the probability of satisfaction of the complete system. By solving a Markov game for each component, RL can produce a controller for each component that maximizes this lower bound. The controller utilizes the information it receives through communication, observations, and any knowledge of a coarse model of other agents. We experimentally demonstrate the efficiency of the proposed approach on a variety of case studies.

For a permutation $\pi: [K]\rightarrow [K]$, a sequence $f: \{1,2,\cdots, n\}\rightarrow \mathbb R$ contains a $\pi$-pattern of size $K$, if there is a sequence of indices $(i_1, i_2, \cdots, i_K)$ ($i_1<i_2<\cdots<i_K$), satisfying that $f(i_a)<f(i_b)$ if $\pi(a)<\pi(b)$, for $a,b\in [K]$. Otherwise, $f$ is referred to as $\pi$-free. For the special case where $\pi = (1,2,\cdots, K)$, it is referred to as the monotone pattern. \cite{newman2017testing} initiated the study of testing $\pi$-freeness with one-sided error. They focused on two specific problems, testing the monotone permutations and the $(1,3,2)$ permutation. For the problem of testing monotone permutation $(1,2,\cdots,K)$, \cite{ben2019finding} improved the $(\log n)^{O(K^2)}$ non-adaptive query complexity of \cite{newman2017testing} to $O((\log n)^{\lfloor \log_{2} K\rfloor})$. Further, \cite{ben2019optimal} proposed an adaptive algorithm with $O(\log n)$ query complexity. However, no progress has yet been made on the problem of testing $(1,3,2)$-freeness. In this work, we present an adaptive algorithm for testing $(1,3,2)$-freeness. The query complexity of our algorithm is $O(\epsilon^{-2}\log^4 n)$, which significantly improves over the $O(\epsilon^{-7}\log^{26}n)$-query adaptive algorithm of \cite{newman2017testing}. This improvement is mainly achieved by the proposal of a new structure embedded in the patterns.

Given a graph $G$, an integer $k\geq 0$, and a non-negative integral function $f:V(G) \rightarrow \mathcal{N}$, the {\sc Vector Domination} problem asks whether a set $S$ of vertices, of cardinality $k$ or less, exists in $G$ so that every vertex $v \in V(G)-S$ has at least $f(v)$ neighbors in $S$. The problem generalizes several domination problems and it has also been shown to generalize Bounded-Degree Vertex Deletion. In this paper, the parameterized version of Vector Domination is studied when the input graph is planar. A linear problem kernel is presented.

北京阿比特科技有限公司