The integer autoregressive (INAR) model is one of the most commonly used models in nonnegative integer-valued time series analysis and is a counterpart to the traditional autoregressive model for continuous-valued time series. To guarantee the integer-valued nature, the binomial thinning operator or more generally the generalized Steutel and van Harn operator is used to define the INAR model. However, the distributions of the counting sequences used in the operators have been determined by the preference of analyst without statistical verification so far. In this paper, we propose a test based on the mean and variance relationships for distributions of counting sequences and a disturbance process to check if the operator is reasonable. We show that our proposed test has asymptotically correct size and is consistent. Numerical simulation is carried out to evaluate the finite sample performance of our test. As a real data application, we apply our test to the monthly number of anorexia cases in animals submitted to animal health laboratories in New Zealand and we conclude that binomial thinning operator is not appropriate.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.
We propose a novel learned keypoint detection method to increase the number of correct matches for the task of non-rigid image correspondence. By leveraging true correspondences acquired by matching annotated image pairs with a specified descriptor extractor, we train an end-to-end convolutional neural network (CNN) to find keypoint locations that are more appropriate to the considered descriptor. For that, we apply geometric and photometric warpings to images to generate a supervisory signal, allowing the optimization of the detector. Experiments demonstrate that our method enhances the Mean Matching Accuracy of numerous descriptors when used in conjunction with our detection method, while outperforming the state-of-the-art keypoint detectors on real images of non-rigid objects by 20 p.p. We also apply our method on the complex real-world task of object retrieval where our detector performs on par with the finest keypoint detectors currently available for this task. The source code and trained models are publicly available at //github.com/verlab/LearningToDetect_PRL_2023
Permutation tests are widely recognized as robust alternatives to tests based on the normal theory. Random permutation tests have been frequently employed to assess the significance of variables in linear models. Despite their widespread use, existing random permutation tests lack finite-sample and assumption-free guarantees for controlling type I error in partial correlation tests. To address this standing challenge, we develop a conformal test through permutation-augmented regressions, which we refer to as PALMRT. PALMRT not only achieves power competitive with conventional methods but also provides reliable control of type I errors at no more than $2\alpha$ given any targeted level $\alpha$, for arbitrary fixed-designs and error distributions. We confirmed this through extensive simulations. Compared to the cyclic permutation test (CPT), which also offers theoretical guarantees, PALMRT does not significantly compromise power or set stringent requirements on the sample size, making it suitable for diverse biomedical applications. We further illustrate their differences in a long-Covid study where PALMRT validated key findings previously identified using the t-test, while CPT suffered from a drastic loss of power. We endorse PALMRT as a robust and practical hypothesis test in scientific research for its superior error control, power preservation, and simplicity.
Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.
This work proposes an adjacent-category autoregressive model for time series of ordinal variables. We apply this model to dendrochronological records to study the effect of climate on the intensity of spruce budworm defoliation during outbreaks in two sites in eastern Canada. The model's parameters are estimated using the maximum likelihood approach. We show that this estimator is consistent and asymptotically Gaussian distributed. We also propose a Portemanteau test for goodness-of-fit. Our study shows that the seasonal ranges of maximum daily temperatures in the spring and summer have a significant quadratic effect on defoliation. The study reveals that for both regions, a greater range of summer daily maximum temperatures is associated with lower levels of defoliation up to a threshold estimated at 22.7C (CI of 0-39.7C at 95%) in T\'emiscamingue and 21.8C (CI of 0-54.2C at 95%) for Matawinie. For Matawinie, a greater range in spring daily maximum temperatures increased defoliation, up to a threshold of 32.5C (CI of 0-80.0C). We also present a statistical test to compare the autoregressive parameter values between different fits of the model, which allows us to detect changes in the defoliation dynamics between the study sites in terms of their respective autoregression structures.
It is disproved the Tokareva's conjecture that any balanced boolean function of appropriate degree is a derivative of some bent function. This result is based on new upper bounds for the numbers of bent and plateaued functions.
The semi-empirical nature of best-estimate models closing the balance equations of thermal-hydraulic (TH) system codes is well-known as a significant source of uncertainty for accuracy of output predictions. This uncertainty, called model uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose estimation requires solving an inverse problem based on a set of adequately chosen real experiments. One method from the TH field, called CIRCE, addresses it. We present in the paper a generalization of this method to several groups of experiments each having their own properties, including different ranges for input conditions and different geometries. An individual (log-)Gaussian distribution is therefore estimated for each group in order to investigate whether the model uncertainty is homogeneous between the groups, or should depend on the group. To this end, a multi-group CIRCE is proposed where a variance parameter is estimated for each group jointly to a mean parameter common to all the groups to preserve the uniqueness of the best-estimate model. The ECME algorithm for Maximum Likelihood Estimation is adapted to the latter context, then applied to relevant demonstration cases. Finally, it is tested on a practical case to assess the uncertainty of critical mass flow assuming two groups due to the difference of geometry between the experimental setups.
Approximating differential operators defined on two-dimensional surfaces is an important problem that arises in many areas of science and engineering. Over the past ten years, localized meshfree methods based on generalized moving least squares (GMLS) and radial basis function finite differences (RBF-FD) have been shown to be effective for this task as they can give high orders of accuracy at low computational cost, and they can be applied to surfaces defined only by point clouds. However, there have yet to be any studies that perform a direct comparison of these methods for approximating surface differential operators (SDOs). The first purpose of this work is to fill that gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally, we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD. The second purpose of this work is to relate the tangent plane formulation of SDOs to the local coordinate formulation used in GMLS and to show that they are equivalent when the tangent space to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when it is unknown. For the numerical comparisons of the methods, we examine their convergence rates for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for various parameter choices. We also compare their efficiency in terms of accuracy per computational cost, both when including and excluding setup costs.
Simulating physical problems involving multi-time scale coupling is challenging due to the need of solving these multi-time scale processes simultaneously. In response to this challenge, this paper proposed an explicit multi-time step algorithm coupled with a solid dynamic relaxation scheme. The explicit scheme simplifies the equation system in contrast to the implicit scheme, while the multi-time step algorithm allows the equations of different physical processes to be solved under different time step sizes. Furthermore, an implicit viscous damping relaxation technique is applied to significantly reduce computational iterations required to achieve equilibrium in the comparatively fast solid response process. To validate the accuracy and efficiency of the proposed algorithm, two distinct scenarios, i.e., a nonlinear hardening bar stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated. The results show good agreement with experimental data and results from other numerical methods, and the simulation time is reduced firstly by independently addressing different processes with the multi-time step algorithm and secondly decreasing solid dynamic relaxation time through the incorporation of damping techniques.