Simulating physical problems involving multi-time scale coupling is challenging due to the need of solving these multi-time scale processes simultaneously. In response to this challenge, this paper proposed an explicit multi-time step algorithm coupled with a solid dynamic relaxation scheme. The explicit scheme simplifies the equation system in contrast to the implicit scheme, while the multi-time step algorithm allows the equations of different physical processes to be solved under different time step sizes. Furthermore, an implicit viscous damping relaxation technique is applied to significantly reduce computational iterations required to achieve equilibrium in the comparatively fast solid response process. To validate the accuracy and efficiency of the proposed algorithm, two distinct scenarios, i.e., a nonlinear hardening bar stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated. The results show good agreement with experimental data and results from other numerical methods, and the simulation time is reduced firstly by independently addressing different processes with the multi-time step algorithm and secondly decreasing solid dynamic relaxation time through the incorporation of damping techniques.
We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
Feature attribution is a fundamental task in both machine learning and data analysis, which involves determining the contribution of individual features or variables to a model's output. This process helps identify the most important features for predicting an outcome. The history of feature attribution methods can be traced back to General Additive Models (GAMs), which extend linear regression models by incorporating non-linear relationships between dependent and independent variables. In recent years, gradient-based methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have limitations. GAMs tend to achieve lower accuracy, gradient-based methods can be difficult to interpret, and surrogate models often suffer from stability and fidelity issues. Furthermore, most existing methods do not consider users' contexts, which can significantly influence their preferences. To address these limitations and advance the current state-of-the-art, we define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction. Additionally, CA-FATA formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it inherently interpretable. CA-FATA also easily integrates side information, such as users' contexts, resulting in more accurate predictions.
The multispecies Landau collision operator describes the two-particle, small scattering angle or grazing collisions in a plasma made up of different species of particles such as electrons and ions. Recently, a structure preserving deterministic particle method arXiv:1910.03080 has been developed for the single species spatially homogeneous Landau equation. This method relies on a regularization of the Landau collision operator so that an approximate solution, which is a linear combination of Dirac delta distributions, is well-defined. Based on a weak form of the regularized Landau equation, the time dependent locations of the Dirac delta functions satisfy a system of ordinary differential equations. In this work, we extend this particle method to the multispecies case, and examine its conservation of mass, momentum, and energy, and decay of entropy properties. We show that the equilibrium distribution of the regularized multispecies Landau equation is a Maxwellian distribution, and state a critical condition on the regularization parameters that guarantees a species independent equilibrium temperature. A convergence study comparing an exact multispecies BKW solution to the particle solution shows approximately 2nd order accuracy. Important physical properties such as conservation, decay of entropy, and equilibrium distribution of the particle method are demonstrated with several numerical examples.
Meta-analysis is the aggregation of data from multiple studies to find patterns across a broad range relating to a particular subject. It is becoming increasingly useful to apply meta-analysis to summarize these studies being done across various fields. In meta-analysis, it is common to use the mean and standard deviation from each study to compare for analysis. While many studies reported mean and standard deviation for their summary statistics, some report other values including the minimum, maximum, median, and first and third quantiles. Often, the quantiles and median are reported when the data is skewed and does not follow a normal distribution. In order to correctly summarize the data and draw conclusions from multiple studies, it is necessary to estimate the mean and standard deviation from each study, considering variation and skewness within each study. In past literature, methods have been proposed to estimate the mean and standard deviation, but do not consider negative values. Data that include negative values are common and would increase the accuracy and impact of the me-ta-analysis. We propose a method that implements a generalized Box-Cox transformation to estimate the mean and standard deviation accounting for such negative values while maintaining similar accuracy.
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.
This paper considers the numerical integration of semilinear evolution PDEs using the high order linearly implicit methods developped in a previous paper in the ODE setting. These methods use a collocation Runge--Kutta method as a basis, and additional variables that are updated explicitly and make the implicit part of the collocation Runge--Kutta method only linearly implicit. In this paper, we introduce several notions of stability for the underlying Runge--Kutta methods as well as for the explicit step on the additional variables necessary to fit the context of evolution PDE. We prove a main theorem about the high order of convergence of these linearly implicit methods in this PDE setting, using the stability hypotheses introduced before. We use nonlinear Schr\''odinger equations and heat equations as main examples but our results extend beyond these two classes of evolution PDEs. We illustrate our main result numerically in dimensions 1 and 2, and we compare the efficiency of the linearly implicit methods with other methods from the litterature. We also illustrate numerically the necessity of the stability conditions of our main result.
We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.