亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We implement full, three-dimensional constrained mixture theory for vascular growth and remodeling into a finite element fluid-structure interaction (FSI) solver. The resulting "fluid-solid-growth" (FSG) solver allows long term, patient-specific predictions of changing hemodynamics, vessel wall morphology, tissue composition, and material properties. This extension from short term (FSI) to long term (FSG) simulations increases clinical relevance by enabling mechanobioloigcally-dependent studies of disease progression in complex domains.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Similar subtrajectory search is a finer-grained operator that can better capture the similarities between one query trajectory and a portion of a data trajectory than the traditional similar trajectory search, which requires the two checked trajectories are similar to each other in whole. Many real applications (e.g., trajectory clustering and trajectory join) utilize similar subtrajectory search as a basic operator. It is considered that the time complexity is O(mn^2) for exact algorithms to solve the similar subtrajectory search problem under most trajectory distance functions in the existing studies, where m is the length of the query trajectory and n is the length of the data trajectory. In this paper, to the best of our knowledge, we are the first to propose an exact algorithm to solve the similar subtrajectory search problem in O(mn) time for most of widely used trajectory distance functions (e.g., WED, DTW, ERP, EDR and Frechet distance). Through extensive experiments on three real datasets, we demonstrate the efficiency and effectiveness of our proposed algorithms.

There is rising interest in differentiable rendering, which allows explicitly modeling geometric priors and constraints in optimization pipelines using first-order methods such as backpropagation. Incorporating such domain knowledge can lead to deep neural networks that are trained more robustly and with limited data, as well as the capability to solve ill-posed inverse problems. Existing efforts in differentiable rendering have focused on imagery from electro-optical sensors, particularly conventional RGB-imagery. In this work, we propose an approach for differentiable rendering of Synthetic Aperture Radar (SAR) imagery, which combines methods from 3D computer graphics with neural rendering. We demonstrate the approach on the inverse graphics problem of 3D Object Reconstruction from limited SAR imagery using high-fidelity simulated SAR data.

Accurate modeling of complex physical problems, such as fluid-structure interaction, requires multiphysics coupling across the interface, which often has intricate geometry and dynamic boundaries. Conventional numerical methods face challenges in handling interface conditions. Deep neural networks offer a mesh-free and flexible alternative, but they suffer from drawbacks such as time-consuming optimization and local optima. In this paper, we propose a mesh-free approach based on Randomized Neural Networks (RNNs), which avoid optimization solvers during training, making them more efficient than traditional deep neural networks. Our approach, called Local Randomized Neural Networks (LRNNs), uses different RNNs to approximate solutions in different subdomains. We discretize the interface problem into a linear system at randomly sampled points across the domain, boundary, and interface using a finite difference scheme, and then solve it by a least-square method. For time-dependent interface problems, we use a space-time approach based on LRNNs. We show the effectiveness and robustness of the LRNNs methods through numerical examples of elliptic and parabolic interface problems. We also demonstrate that our approach can handle high-dimension interface problems. Compared to conventional numerical methods, our approach achieves higher accuracy with fewer degrees of freedom, eliminates the need for complex interface meshing and fitting, and significantly reduces training time, outperforming deep neural networks.

Recent works have shown that imposing tensor structures on the coefficient tensor in regression problems can lead to more reliable parameter estimation and lower sample complexity compared to vector-based methods. This work investigates a new low-rank tensor model, called Low Separation Rank (LSR), in Generalized Linear Model (GLM) problems. The LSR model -- which generalizes the well-known Tucker and CANDECOMP/PARAFAC (CP) models, and is a special case of the Block Tensor Decomposition (BTD) model -- is imposed onto the coefficient tensor in the GLM model. This work proposes a block coordinate descent algorithm for parameter estimation in LSR-structured tensor GLMs. Most importantly, it derives a minimax lower bound on the error threshold on estimating the coefficient tensor in LSR tensor GLM problems. The minimax bound is proportional to the intrinsic degrees of freedom in the LSR tensor GLM problem, suggesting that its sample complexity may be significantly lower than that of vectorized GLMs. This result can also be specialised to lower bound the estimation error in CP and Tucker-structured GLMs. The derived bounds are comparable to tight bounds in the literature for Tucker linear regression, and the tightness of the minimax lower bound is further assessed numerically. Finally, numerical experiments on synthetic datasets demonstrate the efficacy of the proposed LSR tensor model for three regression types (linear, logistic and Poisson). Experiments on a collection of medical imaging datasets demonstrate the usefulness of the LSR model over other tensor models (Tucker and CP) on real, imbalanced data with limited available samples.

We present the first decentralized algorithm for detecting predicates over continuous-time signals under partial synchrony. A distributed cyber-physical system (CPS) consists of a network of agents, each of which measures (or computes) a continuous-time signal. Examples include distributed industrial controllers connected over wireless networks and connected vehicles in traffic. The safety requirements of such CPS, expressed as logical predicates, must be monitored at runtime. This monitoring faces three challenges: first, every agent only knows its own signal, whereas the safety requirement is global and carries over multiple signals. Second, the agents' local clocks drift from each other, so they do not even agree on the time. Thus, it is not clear which signal values are actually synchronous to evaluate the safety predicate. Third, CPS signals are continuous-time so there are potentially uncountably many safety violations to be reported. In this paper, we present the first decentralized algorithm for detecting conjunctive predicates in this setup. Our algorithm returns all possible violations of the predicate, which is important for eliminating bugs from distributed systems regardless of actual clock drift. We prove that this detection algorithm is in the same complexity class as the detector for discrete systems. We implement our detector and validate it experimentally.

We explore the information geometry and asymptotic behaviour of estimators for Kronecker-structured covariances, in both growing-$n$ and growing-$p$ scenarios, with a focus towards examining the quadratic form or partial trace estimator proposed by Linton and Tang. It is shown that the partial trace estimator is asymptotically inefficient An explanation for this inefficiency is that the partial trace estimator does not scale sub-blocks of the sample covariance matrix optimally. To correct for this, an asymptotically efficient, rescaled partial trace estimator is proposed. Motivated by this rescaling, we introduce an orthogonal parameterization for the set of Kronecker covariances. High-dimensional consistency results using the partial trace estimator are obtained that demonstrate a blessing of dimensionality. In settings where an array has at least order three, it is shown that as the array dimensions jointly increase, it is possible to consistently estimate the Kronecker covariance matrix, even when the sample size is one.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司