亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bilevel programming has recently received attention in the literature, due to a wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or in the case of multiple machines connected in a star-shaped network, i.e., federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server) and exhibits privacy vulnerabilities. Hence, it is of interest to develop methods that solve bilevel optimization problems in a communication-efficient decentralized manner. To that end, this paper introduces a penalty function based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is to estimate the hyper-gradient of the penalty function via decentralized computation of matrix-vector products and few vector communications, which is then integrated within our alternating algorithm to give the finite-time convergence analysis under different convexity assumptions. Owing to the generality of this complexity analysis, our result yields convergence rates for a wide variety of consensus problems including minimax and compositional optimization. Empirical results on both synthetic and real datasets demonstrate that the proposed method works well in practice.

相關內容

The growing demand for accurate control in varying and unknown environments has sparked a corresponding increase in the requirements for power supply components, including permanent magnet synchronous motors (PMSMs). To infer the unknown part of the system, machine learning techniques are widely employed, especially Gaussian process regression (GPR) due to its flexibility of continuous system modeling and its guaranteed performance. For practical implementation, distributed GPR is adopted to alleviate the high computational complexity. However, the study of distributed GPR from a control perspective remains an open problem. In this paper, a control-aware optimal aggregation strategy of distributed GPR for PMSMs is proposed based on the Lyapunov stability theory. This strategy exclusively leverages the posterior mean, thereby obviating the need for computationally intensive calculations associated with posterior variance in alternative approaches. Moreover, the straightforward calculation process of our proposed strategy lends itself to seamless implementation in high-frequency PMSM control. The effectiveness of the proposed strategy is demonstrated in the simulations.

We consider best arm identification in the multi-armed bandit problem. Assuming certain continuity conditions of the prior, we characterize the rate of the Bayesian simple regret. Differing from Bayesian regret minimization (Lai, 1987), the leading term in the Bayesian simple regret derives from the region where the gap between optimal and suboptimal arms is smaller than $\sqrt{\frac{\log T}{T}}$. We propose a simple and easy-to-compute algorithm with its leading term matching with the lower bound up to a constant factor; simulation results support our theoretical findings.

Federated bilevel optimization (FBO) has shown great potential recently in machine learning and edge computing due to the emerging nested optimization structure in meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO algorithms often involve complicated computations and require multiple sub-loops per iteration, each of which contains a number of communication rounds. In this paper, we propose a simple and flexible FBO framework named SimFBO, which is easy to implement without sub-loops, and includes a generalized server-side aggregation and update for improving communication efficiency. We further propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO with stronger resilience to heterogeneous local computation. We show that SimFBO and ShroFBO provably achieve a linear convergence speedup with partial client participation and client sampling without replacement, as well as improved sample and communication complexities. Experiments demonstrate the effectiveness of the proposed methods over existing FBO algorithms.

The stochastic compositional minimax problem has attracted a surge of attention in recent years since it covers many emerging machine learning models. Meanwhile, due to the emergence of distributed data, optimizing this kind of problem under the decentralized setting becomes badly needed. However, the compositional structure in the loss function brings unique challenges to designing efficient decentralized optimization algorithms. In particular, our study shows that the standard gossip communication strategy cannot achieve linear speedup for decentralized compositional minimax problems due to the large consensus error about the inner-level function. To address this issue, we developed a novel decentralized stochastic compositional gradient descent ascent with momentum algorithm to reduce the consensus error in the inner-level function. As such, our theoretical results demonstrate that it is able to achieve linear speedup with respect to the number of workers. We believe this novel algorithmic design could benefit the development of decentralized compositional optimization. Finally, we applied our methods to the imbalanced classification problem. The extensive experimental results provide evidence for the effectiveness of our algorithm.

The use of distributed optimization in machine learning can be motivated either by the resulting preservation of privacy or the increase in computational efficiency. On the one hand, training data might be stored across multiple devices. Training a global model within a network where each node only has access to its confidential data requires the use of distributed algorithms. Even if the data is not confidential, sharing it might be prohibitive due to bandwidth limitations. On the other hand, the ever-increasing amount of available data leads to large-scale machine learning problems. By splitting the training process across multiple nodes its efficiency can be significantly increased. This paper aims to demonstrate how dual decomposition can be applied for distributed training of $ K $-means clustering problems. After an overview of distributed and federated machine learning, the mixed-integer quadratically constrained programming-based formulation of the $ K $-means clustering training problem is presented. The training can be performed in a distributed manner by splitting the data across different nodes and linking these nodes through consensus constraints. Finally, the performance of the subgradient method, the bundle trust method, and the quasi-Newton dual ascent algorithm are evaluated on a set of benchmark problems. While the mixed-integer programming-based formulation of the clustering problems suffers from weak integer relaxations, the presented approach can potentially be used to enable an efficient solution in the future, both in a central and distributed setting.

We consider best arm identification in the multi-armed bandit problem. Assuming certain continuity conditions of the prior, we characterize the rate of the Bayesian simple regret. Differing from Bayesian regret minimization (Lai, 1987), the leading term in the Bayesian simple regret derives from the region where the gap between optimal and suboptimal arms is smaller than $\sqrt{\frac{\log T}{T}}$. We propose a simple and easy-to-compute algorithm with its leading term matching with the lower bound up to a constant factor; simulation results support our theoretical findings.

Adaptive multi-agent formation control, which requires the formation to flexibly adjust along with the quantity variations of agents in a decentralized manner, belongs to one of the most challenging issues in multi-agent systems, especially under communication-limited constraints. In this paper, we propose a novel Consensus-based Decentralized Adaptive Formation (Cons-DecAF) framework. Specifically, we develop a novel multi-agent reinforcement learning method, Consensus-oriented Multi-Agent Communication (ConsMAC), to enable agents to perceive global information and establish the consensus from local states by effectively aggregating neighbor messages. Afterwards, we leverage policy distillation to accomplish the adaptive formation adjustment. Meanwhile, instead of pre-assigning specific positions of agents, we employ a displacement-based formation by Hausdorff distance to significantly improve the formation efficiency. The experimental results through extensive simulations validate that the proposed method has achieved outstanding performance in terms of both speed and stability.

We consider the vulnerability of fairness-constrained learning to small amounts of malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and presented negative results showing there exist data distributions where for several fairness constraints, any proper learner will exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we show we can incur only a $\Theta(\alpha)$ loss in accuracy, where $\alpha$ is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an $O(\sqrt{\alpha})$ loss, and give a matching $\Omega(\sqrt{\alpha})$lower bound. In contrast, Konstantinov and Lampert (2021) showed for proper learners the loss in accuracy for both notions is $\Omega(1)$. The key technical novelty of our work is how randomization can bypass simple "tricks" an adversary can use to amplify his power. We also consider additional fairness notions including Equalized Odds and Calibration. For these fairness notions, the excess accuracy clusters into three natural regimes $O(\alpha)$,$O(\sqrt{\alpha})$ and $O(1)$. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data.

Most solutions to the inventory management problem assume a centralization of information that is incompatible with organisational constraints in real supply chain networks. The inventory management problem is a well-known planning problem in operations research, concerned with finding the optimal re-order policy for nodes in a supply chain. While many centralized solutions to the problem exist, they are not applicable to real-world supply chains made up of independent entities. The problem can however be naturally decomposed into sub-problems, each associated with an independent entity, turning it into a multi-agent system. Therefore, a decentralized data-driven solution to inventory management problems using multi-agent reinforcement learning is proposed where each entity is controlled by an agent. Three multi-agent variations of the proximal policy optimization algorithm are investigated through simulations of different supply chain networks and levels of uncertainty. The centralized training decentralized execution framework is deployed, which relies on offline centralization during simulation-based policy identification, but enables decentralization when the policies are deployed online to the real system. Results show that using multi-agent proximal policy optimization with a centralized critic leads to performance very close to that of a centralized data-driven solution and outperforms a distributed model-based solution in most cases while respecting the information constraints of the system.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司