In this paper we study the finite element approximation of systems of second-order nonlinear hyperbolic equations. The proposed numerical method combines a $hp$-version discontinuous Galerkin finite element approximation in the time direction with an $H^1(\Omega)$-conforming finite element approximation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are presented to verify the theoretical results.
An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.
This paper proposes a physically consistent Gaussian Process (GP) enabling the identification of uncertain Lagrangian systems. The function space is tailored according to the energy components of the Lagrangian and the differential equation structure, analytically guaranteeing physical and mathematical properties such as energy conservation and quadratic form. The novel formulation of Cholesky decomposed matrix kernels allow the probabilistic preservation of positive definiteness. Only differential input-to-output measurements of the function map are required while Gaussian noise is permitted in torques, velocities, and accelerations. We demonstrate the effectiveness of the approach in numerical simulation.
In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.
In this paper, we propose a novel high order unfitted finite element method on Cartesian meshes for solving the acoustic wave equation with discontinuous coefficients having complex interface geometry. The unfitted finite element method does not require any penalty to achieve optimal convergence. We also introduce a new explicit time discretization method for the ODE system resulting from the spatial discretization of the wave equation. The strong stability and optimal $hp$-version error estimates both in time and space are established. Numerical examples confirm our theoretical results.
This work introduces a general framework for establishing the long time accuracy for approximations of Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy estimates. In particular, our approach yields weak consistency bounds on $\mathbb{R}^+$ while providing a means to sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop a refinement of certain `weak Harris theorems'. This extension expands the scope of applicability of such Wasserstein contraction estimates to a variety of interesting SPDE examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier-Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation of this system. In the case of a numerical approximation, we establish quantitative estimates on the approximation of invariant measures as well as prove weak consistency on $\mathbb{R}^+$. To develop these numerical analysis results, we provide a refinement of $L^2_x$ accuracy bounds in comparison to the existing literature which are results of independent interest.
In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit finite difference schemes for the one-dimensional advection equation with an inflow boundary condition. The strong stability is studied using the Kreiss-Lopatinskii theory. We introduce a new tool, the intrinsic Kreiss-Lopatinskii determinant, which possesses the same regularity as the vector bundle of discrete stable solutions. By applying standard results of complex analysis to this determinant, we are able to relate the strong stability of numerical schemes to the computation of a winding number, which is robust and cheap. The study is illustrated with the O3 scheme and the fifth-order Lax-Wendroff (LW5) scheme together with a reconstruction procedure at the boundary.
Nonparametric estimation for semilinear SPDEs, namely stochastic reaction-diffusion equations in one space dimension, is studied. We consider observations of the solution field on a discrete grid in time and space with infill asymptotics in both coordinates. Firstly, we derive a nonparametric estimator for the reaction function of the underlying equation. The estimate is chosen from a finite-dimensional function space based on a least squares criterion. Oracle inequalities provide conditions for the estimator to achieve the usual nonparametric rate of convergence. Adaptivity is provided via model selection. Secondly, we show that the asymptotic properties of realized quadratic variation based estimators for the diffusivity and volatility carry over from linear SPDEs. In particular, we obtain a rate-optimal joint estimator of the two parameters. The result relies on our precise analysis of the H\"older regularity of the solution process and its nonlinear component, which may be of its own interest. Both steps of the calibration can be carried out simultaneously without prior knowledge of the parameters.
We consider an online two-stage stochastic optimization with long-term constraints over a finite horizon of $T$ periods. At each period, we take the first-stage action, observe a model parameter realization and then take the second-stage action from a feasible set that depends both on the first-stage decision and the model parameter. We aim to minimize the cumulative objective value while guaranteeing that the long-term average second-stage decision belongs to a set. We propose a general algorithmic framework that derives online algorithms for the online two-stage problem from adversarial learning algorithms. Also, the regret bound of our algorithm cam be reduced to the regret bound of embedded adversarial learning algorithms. Based on our framework, we obtain new results under various settings. When the model parameter at each period is drawn from identical distributions, we derive state-of-art regret bound that improves previous bounds under special cases. Our algorithm is also robust to adversarial corruptions of model parameter realizations. When the model parameters are drawn from unknown non-stationary distributions and we are given prior estimates of the distributions, we develop a new algorithm from our framework with a regret $O(W_T+\sqrt{T})$, where $W_T$ measures the total inaccuracy of the prior estimates.
The Lov\'{a}sz Local Lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection $\mathcal B$ of "bad" events which are mostly independent and have low probability. In its simplest "symmetric" form, it asserts that whenever a bad-event has probability $p$ and affects at most $d$ bad-events, and $e p d < 1$, then a configuration avoiding all $\mathcal B$ exists. A seminal algorithm of Moser & Tardos (2010) gives nearly-automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (1985); this is more powerful than alternate LLL criteria and also removes a number of nuisance parameters and leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility in the functional form of of the bad-events. Third, we provide a derandomized version of the MT-distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non-repetitive vertex coloring, independent transversals, strong coloring, and other problems. These give deterministic algorithms which essentially match the best previous randomized sequential and parallel algorithms.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.