亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In optimal covariance cleaning theory, minimizing the Frobenius norm between the true population covariance matrix and a rotational invariant estimator is a key step. This estimator can be obtained asymptotically for large covariance matrices, without knowledge of the true covariance matrix. In this study, we demonstrate that this minimization problem is equivalent to minimizing the loss of information between the true population covariance and the rotational invariant estimator for normal multivariate variables. However, for Student's t distributions, the minimal Frobenius norm does not necessarily minimize the information loss in finite-sized matrices. Nevertheless, such deviations vanish in the asymptotic regime of large matrices, which might extend the applicability of random matrix theory results to Student's t distributions. These distributions are characterized by heavy tails and are frequently encountered in real-world applications such as finance, turbulence, or nuclear physics. Therefore, our work establishes a connection between statistical random matrix theory and estimation theory in physics, which is predominantly based on information theory.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 估計/估計量 · 不變 · 噪聲 · 相互獨立的 ·
2023 年 6 月 13 日

We study a class of orbit recovery problems in which we observe independent copies of an unknown element of $\mathbb{R}^p$, each linearly acted upon by a random element of some group (such as $\mathbb{Z}/p$ or $\mathrm{SO}(3)$) and then corrupted by additive Gaussian noise. We prove matching upper and lower bounds on the number of samples required to approximately recover the group orbit of this unknown element with high probability. These bounds, based on quantitative techniques in invariant theory, give a precise correspondence between the statistical difficulty of the estimation problem and algebraic properties of the group. Furthermore, we give computer-assisted procedures to certify these properties that are computationally efficient in many cases of interest. The model is motivated by geometric problems in signal processing, computer vision, and structural biology, and applies to the reconstruction problem in cryo-electron microscopy (cryo-EM), a problem of significant practical interest. Our results allow us to verify (for a given problem size) that if cryo-EM images are corrupted by noise with variance $\sigma^2$, the number of images required to recover the molecule structure scales as $\sigma^6$. We match this bound with a novel (albeit computationally expensive) algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from mixed (or heterogeneous) cryo-EM samples.

Prevalent deterministic deep-learning models suffer from significant over-confidence under distribution shifts. Probabilistic approaches can reduce this problem but struggle with computational efficiency. In this paper, we propose Density-Softmax, a fast and lightweight deterministic method to improve calibrated uncertainty estimation via a combination of density function with the softmax layer. By using the latent representation's likelihood value, our approach produces more uncertain predictions when test samples are distant from the training samples. Theoretically, we show that Density-Softmax can produce high-quality uncertainty estimation with neural networks, as it is the solution of minimax uncertainty risk and is distance-aware, thus reducing the over-confidence of the standard softmax. Empirically, our method enjoys similar computational efficiency as a single forward pass deterministic with standard softmax on the shifted toy, vision, and language datasets across modern deep-learning architectures. Notably, Density-Softmax uses 4 times fewer parameters than Deep Ensembles and 6 times lower latency than Rank-1 Bayesian Neural Network, while obtaining competitive predictive performance and lower calibration errors under distribution shifts.

We present a distribution optimization framework that significantly improves confidence bounds for various risk measures compared to previous methods. Our framework encompasses popular risk measures such as the entropic risk measure, conditional value at risk (CVaR), spectral risk measure, distortion risk measure, equivalent certainty, and rank-dependent expected utility, which are well established in risk-sensitive decision-making literature. To achieve this, we introduce two estimation schemes based on concentration bounds derived from the empirical distribution, specifically using either the Wasserstein distance or the supremum distance. Unlike traditional approaches that add or subtract a confidence radius from the empirical risk measures, our proposed schemes evaluate a specific transformation of the empirical distribution based on the distance. Consequently, our confidence bounds consistently yield tighter results compared to previous methods. We further verify the efficacy of the proposed framework by providing tighter problem-dependent regret bound for the CVaR bandit.

A confidence sequence (CS) is a sequence of confidence intervals that is valid at arbitrary data-dependent stopping times. These are useful in applications like A/B testing, multi-armed bandits, off-policy evaluation, election auditing, etc. We present three approaches to constructing a confidence sequence for the population mean, under the minimal assumption that only an upper bound $\sigma^2$ on the variance is known. While previous works rely on light-tail assumptions like boundedness or subGaussianity (under which all moments of a distribution exist), the confidence sequences in our work are able to handle data from a wide range of heavy-tailed distributions. The best among our three methods -- the Catoni-style confidence sequence -- performs remarkably well in practice, essentially matching the state-of-the-art methods for $\sigma^2$-subGaussian data, and provably attains the $\sqrt{\log \log t/t}$ lower bound due to the law of the iterated logarithm. Our findings have important implications for sequential experimentation with unbounded observations, since the $\sigma^2$-bounded-variance assumption is more realistic and easier to verify than $\sigma^2$-subGaussianity (which implies the former). We also extend our methods to data with infinite variance, but having $p$-th central moment ($1<p<2$).

We introduce the local information cost (LIC), which quantifies the amount of information that nodes in a network need to learn when solving a graph problem. We show that the local information cost presents a natural lower bound on the communication complexity of distributed algorithms. For the synchronous CONGEST $KT_1$ model, where each node has initial knowledge of its neighbors' IDs, we prove that $\Omega(\frac{\text{LIC}_\gamma(P)}{\log\tau \log n})$ bits are required for solving a graph problem $P$ with a $\tau$-round algorithm that errs with probability at most $\gamma$. Our result is the first lower bound that yields a general trade-off between communication and time for graph problems in the CONGEST $KT_1$ model. We demonstrate how to apply the local information cost by deriving a lower bound on the communication complexity of computing routing tables for all-pairs-shortest-paths (APSP) routing, as well as for computing a spanner with multiplicative stretch $2t-1$ that consists of at most $O(n^{1+\frac{1}{t} + \epsilon})$ edges, where $\epsilon = O( {1}/{t^2} )$. More concretely, we derive the following lower bounds in the CONGEST model under the $KT_1$ assumption: For constructing routing tables, we show that any $O(\text{poly}(n))$-time algorithm has a communication complexity of $\Omega( {n^2}/{\log^2 n} )$ bits. Our main result is for constructing graph spanners: We show that any $O(\text{poly}(n))$-time algorithm must send at least $\tilde\Omega(\tfrac{1}{t^2} n^{1+{1}/{2t}})$ bits. Previously, only a trivial lower bound of $\tilde \Omega(n)$ bits was known for these problems.

Repeated measurements are common in many fields, where random variables are observed repeatedly across different subjects. Such data have an underlying hierarchical structure, and it is of interest to learn covariance/correlation at different levels. Most existing methods for sparse covariance/correlation matrix estimation assume independent samples. Ignoring the underlying hierarchical structure and correlation within the subject leads to erroneous scientific conclusions. In this paper, we study the problem of sparse and positive-definite estimation of between-subject and within-subject covariance/correlation matrices for repeated measurements. Our estimators are solutions to convex optimization problems that can be solved efficiently. We establish estimation error rates for the proposed estimators and demonstrate their favorable performance through theoretical analysis and comprehensive simulation studies. We further apply our methods to construct between-subject and within-subject covariance graphs of clinical variables from hemodialysis patients.

Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.

Histograms are among the most popular methods used in exploratory analysis to summarize univariate distributions. In particular, irregular histograms are good non-parametric density estimators that require very few parameters: the number of bins with their lengths and frequencies. Many approaches have been proposed in the literature to infer these parameters, either assuming hypotheses about the underlying data distributions or exploiting a model selection approach. In this paper, we focus on the G-Enum histogram method, which exploits the Minimum Description Length (MDL) principle to build histograms without any user parameter and achieves state-of-the art performance w.r.t accuracy; parsimony and computation time. We investigate on the limits of this method in the case of outliers or heavy-tailed distributions. We suggest a two-level heuristic to deal with such cases. The first level exploits a logarithmic transformation of the data to split the data set into a list of data subsets with a controlled range of values. The second level builds a sub-histogram for each data subset and aggregates them to obtain a complete histogram. Extensive experiments show the benefits of the approach.

Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司