Post commercial deployment of fifth-generation (5G) technologies, the consideration of sixth-generation (6G) networks is drawing remarkable attention from research communities. Researchers suggest that similar to 5G, 6G technology must be human-centric where high secrecy together with high data rate will be the key features. These challenges can be easily overcome utilizing PHY security techniques over high-frequency free-space or underwater optical wireless communication (UOWC) technologies. But in long-distance communication, turbulence components drastically affect the optical signals, leading to the invention of the combination of radio-frequency (RF) links with optical links. This work deals with the secrecy performance analysis of a mixed RF-UOWC system where an eavesdropper tries to intercept RF communications. RF and optical links undergo $\eta-\mu$ and mixture exponential generalized Gamma distributions, respectively. To keep pace with the high data rate of optical technologies, we exploit the antenna selection scheme at the source and maximal ratio combining diversity at the relay and eavesdropper, while the eavesdropper is unaware of the antenna selection scheme. We derive closed-form expressions of average secrecy capacity, secrecy outage probability, and strictly positive secrecy capacity to demonstrate the impacts of the system parameters on the secrecy behavior. Finally, the expressions are corroborated via Monte-Carlo simulations.
In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.
Introducing new technologies such as messaging platforms, and the chatbots attached to them, in higher education, is rapidly growing. This introduction entails a careful consideration of the potential opportunities and/or challenges of adopting these tools. Hence, a thorough examination of the teachers' experiences in this discipline can shed light on the effective ways of enhancing students' learning and boosting their progress. In this contribution, we have surveyed the opinions of tertiary education teachers based in Spain (mainly) and Spanish-speaking countries. The focus of these surveys is to collect teachers' feedback about their opinions regarding the introduction of the messaging platforms and chatbots in their classes, understand their needs and to gather information about the various educational use cases where these tools are valuable. In addition, an analysis of how and when teachers' opinions towards the use of these tools can vary across gender, experience, and their discipline of specialisation is presented. The key findings of this study highlight the factors that can contribute to the advancement of the adoption of messaging platforms and chatbots in higher education institutions to achieve the desired learning outcomes.
Glaucoma is one of the ophthalmic diseases that may cause blindness, for which early detection and treatment are very important. Fundus images and optical coherence tomography (OCT) images are both widely-used modalities in diagnosing glaucoma. However, existing glaucoma grading approaches mainly utilize a single modality, ignoring the complementary information between fundus and OCT. In this paper, we propose an efficient multi-modality supervised contrastive learning framework, named COROLLA, for glaucoma grading. Through layer segmentation as well as thickness calculation and projection, retinal thickness maps are extracted from the original OCT volumes and used as a replacing modality, resulting in more efficient calculations with less memory usage. Given the high structure and distribution similarities across medical image samples, we employ supervised contrastive learning to increase our models' discriminative power with better convergence. Moreover, feature-level fusion of paired fundus image and thickness map is conducted for enhanced diagnosis accuracy. On the GAMMA dataset, our COROLLA framework achieves overwhelming glaucoma grading performance compared to state-of-the-art methods.
The introduction of online marketplace platforms has led to the advent of new forms of flexible, on-demand (or 'gig') work. Yet, most prior research concerning the experience of gig workers examines delivery or crowdsourcing platforms, while the experience of the large numbers of workers who undertake educational labour in the form of tutoring gigs remains understudied. To address this, we use a computational grounded theory approach to analyse tutors' discussions on Reddit. This approach consists of three phases including data exploration, modelling and human-centred interpretation. We use both validation and human evaluation to increase the trustworthiness and reliability of the computational methods. This paper is a work in progress and reports on the first of the three phases of this approach.
High-speed train (HST) communications with orthogonal frequency division multiplexing (OFDM) techniques have received significant attention in recent years. Besides, cell-free (CF) massive multiple-input multiple-output (MIMO) is considered a promising technology to achieve the ultimate performance limit. In this paper, we focus on the performance of CF massive MIMO-OFDM systems with both matched filter and large-scale fading decoding (LSFD) receivers in HST communications. HST communications with small cell and cellular massive MIMO-OFDM systems are also analyzed for comparison. Considering the bad effect of Doppler frequency offset (DFO) on system performance, exact closed-form expressions for uplink spectral efficiency (SE) of all systems are derived. According to the simulation results, we find that the CF massive MIMO-OFDM system with LSFD achieves both larger SE and lower SE drop percentages than other systems. In addition, increasing the number of access points (APs) and antennas per AP can effectively compensate for the performance loss from the DFO. Moreover, there is an optimal vertical distance between APs and HST to achieve the maximum SE.
Cell-free (CF) massive multiple-input multiple-output (MIMO) systems are expected to implement advanced cooperative communication techniques to let geographically distributed access points jointly serve user equipments. Building on the \emph{Team Theory}, we design the uplink team minimum mean-squared error (TMMSE) combining under limited data and flexible channel state information (CSI) sharing. Taking into account the effect of both channel estimation errors and pilot contamination, a minimum MSE problem is formulated to derive unidirectional TMMSE, centralized TMMSE and statistical TMMSE combining functions, where CF massive MIMO systems operate in unidirectional CSI, centralized CSI and statistical CSI sharing schemes, respectively. We then derive the uplink spectral efficiency (SE) of the considered system. The results show that, compared to centralized TMMSE, the unidirectional TMMSE only needs nearly half the cost of CSI sharing burden with neglectable SE performance loss. Moreover, the performance gap between unidirectional and centralized TMMSE combining schemes can be effectively reduced by increasing the number of APs and antennas per AP.
We consider fully discrete embedded finite element approximations for a shallow water hyperbolic problem and its reduced-order model. Our approach is based on a fixed background mesh and an embedded reduced basis. The Shifted Boundary Method for spatial discretization is combined with an explicit predictor/multi-corrector time integration to integrate in time the numerical solutions to the shallow water equations, both for the full and reduced-order model. In order to improve the approximation of the solution manifold also for geometries that are untested during the offline stage, the snapshots have been pre-processed by means of an interpolation procedure that precedes the reduced basis computation. The methodology is tested on geometrically parametrized shapes with varying size and position.
This paper studies a hierarchical over-the-air computation (AirComp) network over a large area, in which multiple relays are exploited to facilitate data aggregation from massive WDs. We present a two-phase amplify-and-forward (AF) relaying protocol. In the first phase, the WDs simultaneously send their data to the relays, while in the second phase, the relays amplify the respectively received signals and concurrently forward them to the fusion center (FC) for aggregation. Our objective is to minimize the computational mean squared error (MSE) at the FC, by jointly optimizing the WD transmit coefficients, the relay AF coefficients, and the FC de-noising factor, subject to their individual transmit power constraints. First, we consider the centralized design with global channel state information (CSI), in which the inter-relay signals can be exploited beneficially for data aggregation. In this case, we develop an alternating-optimization-based algorithm to obtain a high-quality solution to the computational MSE minimization problem. Next, to reduce the signaling overhead caused by the centralized design, we consider an alternative decentralized design with partial CSI, in which the relays and the FC make their own decisions by only requiring the channel power gain information across different relays. In this case, the relays and FC need to treat the inter-relay signals as harmful interference or noise. Accordingly, we optimize the transmit coefficients of the WDs associated with each relay, and the relay AF coefficients (together with the FC de-noising factor) in an iterative manner, which can be implemented efficiently in a decentralized way.
We study a dynamic infection spread model, inspired by the discrete time SIR model, where infections are spread via non-isolated infected individuals. While infection keeps spreading over time, a limited capacity testing is performed at each time instance as well. In contrast to the classical, static, group testing problem, the objective in our setup is not to find the minimum number of required tests to identify the infection status of every individual in the population, but to control the infection spread by detecting and isolating the infections over time by using the given, limited number of tests. In order to analyze the performance of the proposed algorithms, we focus on the mean-sense analysis of the number of individuals that remain non-infected throughout the process of controlling the infection. We propose two dynamic algorithms that both use given limited number of tests to identify and isolate the infections over time, while the infection spreads. While the first algorithm is a dynamic randomized individual testing algorithm, in the second algorithm we employ the group testing approach similar to the original work of Dorfman. By considering weak versions of our algorithms, we obtain lower bounds for the performance of our algorithms. Finally, we implement our algorithms and run simulations to gather numerical results and compare our algorithms and theoretical approximation results under different sets of system parameters.
In this paper, a numerical scheme for a nonlinear McKendrick-von Foerster equation with diffusion in age (MV-D) with the Dirichlet boundary condition is proposed. The main idea to derive the scheme is to use the discretization based on the method of characteristics to the convection part, and the finite difference method to the rest of the terms. The nonlocal terms are dealt with the quadrature methods. As a result, an implicit scheme is obtained for the boundary value problem under consideration. The consistency and the convergence of the proposed numerical scheme is established. Moreover, numerical simulations are presented to validate the theoretical results.