We present two (a decoupled and a coupled) integral-equation-based methods for the Morse-Ingard equations subject to Neumann boundary conditions on the exterior domain. Both methods are based on second-kind integral equation (SKIE) formulations. The coupled method is well-conditioned and can achieve high accuracy. The decoupled method has lower computational cost and more flexibility in dealing with the boundary layer; however, it is prone to the ill-conditioning of the decoupling transform and cannot achieve as high accuracy as the coupled method. We show numerical examples using a Nystr\"om method based on quadrature-by-expansion (QBX) with fast-multipole acceleration. We demonstrate the accuracy and efficiency of the solvers in both two and three dimensions with complex geometry.
U-statistics play central roles in many statistical learning tools but face the haunting issue of scalability. Significant efforts have been devoted into accelerating computation by U-statistic reduction. However, existing results almost exclusively focus on power analysis, while little work addresses risk control accuracy -- comparatively, the latter requires distinct and much more challenging techniques. In this paper, we establish the first statistical inference procedure with provably higher-order accurate risk control for incomplete U-statistics. The sharpness of our new result enables us to reveal how risk control accuracy also trades off with speed for the first time in literature, which complements the well-known variance-speed trade-off. Our proposed general framework converts the long-standing challenge of formulating accurate statistical inference procedures for many different designs into a surprisingly routine task. This paper covers non-degenerate and degenerate U-statistics, and network moments. We conducted comprehensive numerical studies and observed results that validate our theory's sharpness. Our method also demonstrates effectiveness on real-world data applications.
The Fokker-Planck equation describes the evolution of the probability density associated with a stochastic differential equation. As the dimension of the system grows, solving this partial differential equation (PDE) using conventional numerical methods becomes computationally prohibitive. Here, we introduce a fast, scalable, and interpretable method for solving the Fokker-Planck equation which is applicable in higher dimensions. This method approximates the solution as a linear combination of shape-morphing Gaussians with time-dependent means and covariances. These parameters evolve according to the method of reduced-order nonlinear solutions (RONS) which ensures that the approximate solution stays close to the true solution of the PDE for all times. As such, the proposed method approximates the transient dynamics as well as the equilibrium density, when the latter exists. Our approximate solutions can be viewed as an evolution on a finite-dimensional statistical manifold embedded in the space of probability densities. We show that the metric tensor in RONS coincides with the Fisher information matrix on this manifold. We also discuss the interpretation of our method as a shallow neural network with Gaussian activation functions and time-varying parameters. In contrast to existing deep learning methods, our method is interpretable, requires no training, and automatically ensures that the approximate solution satisfies all properties of a probability density.
A stable and high-order accurate solver for linear and nonlinear parabolic equations is presented. An additive Runge-Kutta method is used for the time stepping, which integrates the linear stiff terms by an implicit singly diagonally implicit Runge-Kutta (ESDIRK) method and the nonlinear terms by an explicit Runge-Kutta (ERK) method. In each time step, the implicit solve is performed by the recently developed Hierarchical Poincar\'e-Steklov (HPS) method. This is a fast direct solver for elliptic equations that decomposes the space domain into a hierarchical tree of subdomains and builds spectral collocation solvers locally on the subdomains. These ideas are naturally combined in the presented method since the singly diagonal coefficient in ESDIRK and a fixed time-step ensures that the coefficient matrix in the implicit solve of HPS remains the same for all time stages. This means that the precomputed inverse can be efficiently reused, leading to a scheme with complexity (in two dimensions) $\mathcal{O}(N^{1.5})$ for the precomputation where the solution operator to the elliptic problems is built, and then $\mathcal{O}(N)$ for each time step. The stability of the method is proved for first order in time and any order in space, and numerical evidence substantiates a claim of stability for a much broader class of time discretization methods.Numerical experiments supporting the accuracy of efficiency of the method in one and two dimensions are presented.
Interface problems depict many fundamental physical phenomena and widely apply in the engineering. However, it is challenging to develop efficient fully decoupled numerical methods for solving degenerate interface problems in which the coefficient of a PDE is discontinuous and greater than or equal to zero on the interface. The main motivation in this paper is to construct fully decoupled numerical methods for solving nonlinear degenerate interface problems with ``double singularities". An efficient fully decoupled numerical method is proposed for nonlinear degenerate interface problems. The scheme combines deep neural network on the singular subdomain with finite difference method on the regular subdomain. The key of the new approach is to split nonlinear degenerate partial differential equation with interface into two independent boundary value problems based on deep learning. The outstanding advantages of the proposed schemes are that not only the convergence order of the degenerate interface problems on whole domain is determined by the finite difference scheme on the regular subdomain, but also can calculate $\mathbf{VERY}$ $\mathbf{BIG}$ jump ratio(such as $10^{12}:1$ or $1:10^{12}$) for the interface problems including degenerate and non-degenerate cases. The expansion of the solutions does not contains any undetermined parameters in the numerical method. In this way, two independent nonlinear systems are constructed in other subdomains and can be computed in parallel. The flexibility, accuracy and efficiency of the methods are validated from various experiments in both 1D and 2D. Specially, not only our method is suitable for solving degenerate interface case, but also for non-degenerate interface case. Some application examples with complicated multi-connected and sharp edge interface examples including degenerate and nondegenerate cases are also presented.
In this article we develop a high order accurate method to solve the incompressible boundary layer equations in a provably stable manner.~We first derive continuous energy estimates,~and then proceed to the discrete setting.~We formulate the discrete approximation using high-order finite difference methods on summation-by-parts form and implement the boundary conditions weakly using the simultaneous approximation term method.~By applying the discrete energy method and imitating the continuous analysis,~the discrete estimate that resembles the continuous counterpart is obtained proving stability.~We also show that these newly derived boundary conditions removes the singularities associated with the null-space of the nonlinear discrete spatial operator.~Numerical experiments that verifies the high-order accuracy of the scheme and coincides with the theoretical results are presented.~The numerical results are compared with the well-known Blasius similarity solution as well as that resulting from the solution of the incompressible Navier Stokes equations.
Bilevel programming has recently received attention in the literature, due to a wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or in the case of multiple machines connected in a star-shaped network, i.e., federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server) and exhibits privacy vulnerabilities. Hence, it is of interest to develop methods that solve bilevel optimization problems in a communication-efficient decentralized manner. To that end, this paper introduces a penalty function based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is to estimate the hyper-gradient of the penalty function via decentralized computation of matrix-vector products and few vector communications, which is then integrated within our alternating algorithm to give the finite-time convergence analysis under different convexity assumptions. Owing to the generality of this complexity analysis, our result yields convergence rates for a wide variety of consensus problems including minimax and compositional optimization. Empirical results on both synthetic and real datasets demonstrate that the proposed method works well in practice.
We introduce a new overlapping Domain Decomposition Method (DDM) to solve the fully nonlinear Monge-Amp\`ere equation. While DDMs have been extensively studied for linear problems, their application to fully nonlinear partial differential equations (PDE) remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.
Implicit layer deep learning techniques, like Neural Differential Equations, have become an important modeling framework due to their ability to adapt to new problems automatically. Training a neural differential equation is effectively a search over a space of plausible dynamical systems. However, controlling the computational cost for these models is difficult since it relies on the number of steps the adaptive solver takes. Most prior works have used higher-order methods to reduce prediction timings while greatly increasing training time or reducing both training and prediction timings by relying on specific training algorithms, which are harder to use as a drop-in replacement due to strict requirements on automatic differentiation. In this manuscript, we use internal cost heuristics of adaptive differential equation solvers at stochastic time points to guide the training toward learning a dynamical system that is easier to integrate. We "close the black-box" and allow the use of our method with any adjoint technique for gradient calculations of the differential equation solution. We perform experimental studies to compare our method to global regularization to show that we attain similar performance numbers without compromising the flexibility of implementation on ordinary differential equations (ODEs) and stochastic differential equations (SDEs). We develop two sampling strategies to trade off between performance and training time. Our method reduces the number of function evaluations to 0.556-0.733x and accelerates predictions by 1.3-2x.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.