This paper develops a policy learning method for tuning a pre-trained policy to adapt to additional tasks without altering the original task. A method named Adaptive Policy Gradient (APG) is proposed in this paper, which combines Bellman's principle of optimality with the policy gradient approach to improve the convergence rate. This paper provides theoretical analysis which guarantees the convergence rate and sample complexity of $\mathcal{O}(1/T)$ and $\mathcal{O}(1/\epsilon)$, respectively, where $T$ denotes the number of iterations and $\epsilon$ denotes the accuracy of the resulting stationary policy. Furthermore, several challenging numerical simulations, including cartpole, lunar lander, and robot arm, are provided to show that APG obtains similar performance compared to existing deterministic policy gradient methods while utilizing much less data and converging at a faster rate.
We study differentially private (DP) machine learning algorithms as instances of noisy fixed-point iterations, in order to derive privacy and utility results from this well-studied framework. We show that this new perspective recovers popular private gradient-based methods like DP-SGD and provides a principled way to design and analyze new private optimization algorithms in a flexible manner. Focusing on the widely-used Alternating Directions Method of Multipliers (ADMM) method, we use our general framework to derive novel private ADMM algorithms for centralized, federated and fully decentralized learning. For these three algorithms, we establish strong privacy guarantees leveraging privacy amplification by iteration and by subsampling. Finally, we provide utility guarantees using a unified analysis that exploits a recent linear convergence result for noisy fixed-point iterations.
We extend and combine several tools of the literature to design fast, adaptive, anytime and scale-free online learning algorithms. Scale-free regret bounds must scale linearly with the maximum loss, both toward large losses and toward very small losses. Adaptive regret bounds demonstrate that an algorithm can take advantage of easy data and potentially have constant regret. We seek to develop fast algorithms that depend on as few parameters as possible, in particular they should be anytime and thus not depend on the time horizon. Our first and main tool, isotuning, is a generalization of the idea of balancing the trade-off of the regret. We develop a set of tools to design and analyze such learning rates easily and show that they adapts automatically to the rate of the regret (whether constant, $O(\log T)$, $O(\sqrt{T})$, etc.) within a factor 2 of the optimal learning rate in hindsight for the same observed quantities. The second tool is an online correction, which allows us to obtain centered bounds for many algorithms, to prevent the regret bounds from being vacuous when the domain is overly large or only partially constrained. The last tool, null updates, prevents the algorithm from performing overly large updates, which could result in unbounded regret, or even invalid updates. We develop a general theory using these tools and apply it to several standard algorithms. In particular, we (almost entirely) restore the adaptivity to small losses of FTRL for unbounded domains, design and prove scale-free adaptive guarantees for a variant of Mirror Descent (at least when the Bregman divergence is convex in its second argument), extend Adapt-ML-Prod to scale-free guarantees, and provide several other minor contributions about Prod, AdaHedge, BOA and Soft-Bayes.
Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature. Nonetheless, the lack of freedom in managing user data can lead to group fairness issues, where models might be biased towards sensitive factors such as race or gender, even if they are trained using a legally compliant process. To redress this concern, this paper proposes a novel FL algorithm designed explicitly to address group fairness issues. We show empirically on CelebA and ImSitu datasets that the proposed method can improve fairness both quantitatively and qualitatively with minimal loss in accuracy in the presence of statistical heterogeneity and with different numbers of clients. Besides improving fairness, the proposed FL algorithm is compatible with local differential privacy (LDP), has negligible communication costs, and results in minimal overhead when migrating existing FL systems from the common FL protocol such as FederatedAveraging (FedAvg). We also provide the theoretical convergence rate guarantee for the proposed algorithm and the required noise level of the Gaussian mechanism to achieve desired LDP. This innovative approach holds significant potential to enhance the fairness and effectiveness of FL systems, particularly in sensitive applications such as healthcare or criminal justice.
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, training deep learning models robust to adversarial attacks is still an open problem. In this paper, we analyse the geometry of adversarial attacks in the large-data, overparameterized limit for Bayesian Neural Networks (BNNs). We show that, in the limit, vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution, i.e., when the data lies on a lower-dimensional submanifold of the ambient space. As a direct consequence, we demonstrate that in this limit BNN posteriors are robust to gradient-based adversarial attacks. Crucially, we prove that the expected gradient of the loss with respect to the BNN posterior distribution is vanishing, even when each neural network sampled from the posterior is vulnerable to gradient-based attacks. Experimental results on the MNIST, Fashion MNIST, and half moons datasets, representing the finite data regime, with BNNs trained with Hamiltonian Monte Carlo and Variational Inference, support this line of arguments, showing that BNNs can display both high accuracy on clean data and robustness to both gradient-based and gradient-free based adversarial attacks.
We investigate a generalized framework for estimating latent low-rank tensors in an online setting, encompassing both linear and generalized linear models. This framework offers a flexible approach for handling continuous or categorical variables. Additionally, we investigate two specific applications: online tensor completion and online binary tensor learning. To address these challenges, we propose the online Riemannian gradient descent algorithm, which demonstrates linear convergence and the ability to recover the low-rank component under appropriate conditions in all applications. Furthermore, we establish a precise entry-wise error bound for online tensor completion. Notably, our work represents the first attempt to incorporate noise in the online low-rank tensor recovery task. Intriguingly, we observe a surprising trade-off between computational and statistical aspects in the presence of noise. Increasing the step size accelerates convergence but leads to higher statistical error, whereas a smaller step size yields a statistically optimal estimator at the expense of slower convergence. Moreover, we conduct regret analysis for online tensor regression. Under the fixed step size regime, a fascinating trilemma concerning the convergence rate, statistical error rate, and regret is observed. With an optimal choice of step size we achieve an optimal regret of $O(\sqrt{T})$. Furthermore, we extend our analysis to the adaptive setting where the horizon T is unknown. In this case, we demonstrate that by employing different step sizes, we can attain a statistically optimal error rate along with a regret of $O(\log T)$. To validate our theoretical claims, we provide numerical results that corroborate our findings and support our assertions.
Deep neural networks (DNN) with a huge number of adjustable parameters remain largely black boxes. To shed light on the hidden layers of DNN, we study supervised learning by a DNN of width $N$ and depth $L$ consisting of $NL$ perceptrons with $c$ inputs by a statistical mechanics approach called the teacher-student setting. We consider an ensemble of student machines that exactly reproduce $M$ sets of $N$ dimensional input/output relations provided by a teacher machine. We show that the problem becomes exactly solvable in what we call as 'dense limit': $N \gg c \gg 1$ and $M \gg 1$ with fixed $\alpha=M/c$ using the replica method developed in (H. Yoshino, (2020)). We also study the model numerically performing simple greedy MC simulations. Simulations reveal that learning by the DNN is quite heterogeneous in the network space: configurations of the teacher and the student machines are more correlated within the layers closer to the input/output boundaries while the central region remains much less correlated due to the over-parametrization in qualitative agreement with the theoretical prediction. We evaluate the generalization-error of the DNN with various depth $L$ both theoretically and numerically. Remarkably both the theory and simulation suggest generalization-ability of the student machines, which are only weakly correlated with the teacher in the center, does not vanish even in the deep limit $L \gg 1$ where the system becomes heavily over-parametrized. We also consider the impact of effective dimension $D(\leq N)$ of data by incorporating the hidden manifold model (S. Goldt et. al., (2020)) into our model. The theory implies that the loop corrections to the dense limit become enhanced by either decreasing the width $N$ or decreasing the effective dimension $D$ of the data. Simulation suggests both lead to significant improvements in generalization-ability.
D-Adaptation is an approach to automatically setting the learning rate which asymptotically achieves the optimal rate of convergence for minimizing convex Lipschitz functions, with no back-tracking or line searches, and no additional function value or gradient evaluations per step. Our approach is the first hyper-parameter free method for this class without additional multiplicative log factors in the convergence rate. We present extensive experiments for SGD and Adam variants of our method, where the method automatically matches hand-tuned learning rates across more than a dozen diverse machine learning problems, including large-scale vision and language problems. An open-source implementation is available.
An algorithm is said to be adaptive to a certain parameter (of the problem) if it does not need a priori knowledge of such a parameter but performs competitively to those that know it. This dissertation presents our work on adaptive algorithms in following scenarios: 1. In the stochastic optimization setting, we only receive stochastic gradients and the level of noise in evaluating them greatly affects the convergence rate. Tuning is typically required when without prior knowledge of the noise scale in order to achieve the optimal rate. Considering this, we designed and analyzed noise-adaptive algorithms that can automatically ensure (near)-optimal rates under different noise scales without knowing it. 2. In training deep neural networks, the scales of gradient magnitudes in each coordinate can scatter across a very wide range unless normalization techniques, like BatchNorm, are employed. In such situations, algorithms not addressing this problem of gradient scales can behave very poorly. To mitigate this, we formally established the advantage of scale-free algorithms that adapt to the gradient scales and presented its real benefits in empirical experiments. 3. Traditional analyses in non-convex optimization typically rely on the smoothness assumption. Yet, this condition does not capture the properties of some deep learning objective functions, including the ones involving Long Short-Term Memory networks and Transformers. Instead, they satisfy a much more relaxed condition, with potentially unbounded smoothness. Under this condition, we show that a generalized SignSGD algorithm can theoretically match the best-known convergence rates obtained by SGD with gradient clipping but does not need explicit clipping at all, and it can empirically match the performance of Adam and beat others. Moreover, it can also be made to automatically adapt to the unknown relaxed smoothness.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.