亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This survey presents the evolution of live media streaming and the technological developments behind today's IP-based low-latency live streaming systems. Live streaming primarily involves capturing, encoding, packaging and delivering real-time events such as live sports, live news, personal broadcasts and surveillance videos. Live streaming also involves concurrent streaming of linear TV programming off the satellite, cable, over-the-air or IPTV broadcast, where the programming is not necessarily a real-time event. The survey starts with a discussion on the latency and latency continuum in streaming applications. Then, it lays out the existing live streaming workflows and protocols, followed by an in-depth analysis of the latency sources in these workflows and protocols. The survey continues with the technology enablers, low-latency extensions for the popular HTTP adaptive streaming methods and enhancements for robust low-latency playback. An entire section is dedicated to the detailed summary and findings of Twitch's grand challenge on low-latency live streaming. The survey concludes with a discussion of ongoing research problems in this space.

相關內容

We propose LASER, a neuro-symbolic approach to learn semantic video representations that capture rich spatial and temporal properties in video data by leveraging high-level logic specifications. In particular, we formulate the problem in terms of alignment between raw videos and spatio-temporal logic specifications. The alignment algorithm leverages a differentiable symbolic reasoner and a combination of contrastive, temporal, and semantics losses. It effectively and efficiently trains low-level perception models to extract fine-grained video representation in the form of a spatio-temporal scene graph that conforms to the desired high-level specification. In doing so, we explore a novel methodology that weakly supervises the learning of video semantic representations through logic specifications. We evaluate our method on two datasets with rich spatial and temporal specifications: 20BN-Something-Something and MUGEN. We demonstrate that our method learns better fine-grained video semantics than existing baselines.

The Large Vision-Language Model (LVLM) has enhanced the performance of various downstream tasks in visual-language understanding. Most existing approaches encode images and videos into separate feature spaces, which are then fed as inputs to large language models. However, due to the lack of unified tokenization for images and videos, namely misalignment before projection, it becomes challenging for a Large Language Model (LLM) to learn multi-modal interactions from several poor projection layers. In this work, we unify visual representation into the language feature space to advance the foundational LLM towards a unified LVLM. As a result, we establish a simple but robust LVLM baseline, Video-LLaVA, which learns from a mixed dataset of images and videos, mutually enhancing each other. Video-LLaVA achieves superior performances on a broad range of 9 image benchmarks across 5 image question-answering datasets and 4 image benchmark toolkits. Additionally, our Video-LLaVA also outperforms Video-ChatGPT by 5.8%, 9.9%, 18.6%, and 10.1% on MSRVTT, MSVD, TGIF, and ActivityNet, respectively. Notably, extensive experiments demonstrate that Video-LLaVA mutually benefits images and videos within a unified visual representation, outperforming models designed specifically for images or videos. We aim for this work to provide modest insights into the multi-modal inputs for the LLM.

Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: //github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.

Background: Establishing traceability from requirements documents to downstream artifacts early can be beneficial as it allows engineers to reason about requirements quality (e.g. completeness, consistency, redundancy). However, creating such early traces is difficult if downstream artifacts do not exist yet. Objective: We propose to use domain-specific taxonomies to establish early traceability, raising the value and perceived benefits of trace links so that they are also available at later development phases, e.g. in design, testing or maintenance. Method: We developed a recommender system that suggests trace links from requirements to a domain-specific taxonomy based on a series of heuristics. We designed a controlled experiment to compare industry practitioners' efficiency, accuracy, consistency and confidence with and without support from the recommender. Results: We have piloted the experimental material with seven practitioners. The analysis of self-reported confidence suggests that the trace task itself is very challenging as both control and treatment group report low confidence on correctness and completeness. Conclusions: As a pilot, the experiment was successful since it provided initial feedback on the performance of the recommender, insight on the experimental material and illustrated that the collected data can be meaningfully analysed.

With the rapid advancement of machine learning models for NLP tasks, collecting high-fidelity labels from AI models is a realistic possibility. Firms now make AI available to customers via predictions as a service (PaaS). This includes PaaS products for healthcare. It is unclear whether these labels can be used for training a local model without expensive annotation checking by in-house experts. In this work, we propose a new framework for Human Correction of AI-Generated Labels (H-COAL). By ranking AI-generated outputs, one can selectively correct labels and approach gold standard performance (100% human labeling) with significantly less human effort. We show that correcting 5% of labels can close the AI-human performance gap by up to 64% relative improvement, and correcting 20% of labels can close the performance gap by up to 86% relative improvement.

Generalizable NeRF can directly synthesize novel views across new scenes, eliminating the need for scene-specific retraining in vanilla NeRF. A critical enabling factor in these approaches is the extraction of a generalizable 3D representation by aggregating source-view features. In this paper, we propose an Entangled View-Epipolar Information Aggregation method dubbed EVE-NeRF. Different from existing methods that consider cross-view and along-epipolar information independently, EVE-NeRF conducts the view-epipolar feature aggregation in an entangled manner by injecting the scene-invariant appearance continuity and geometry consistency priors to the aggregation process. Our approach effectively mitigates the potential lack of inherent geometric and appearance constraint resulting from one-dimensional interactions, thus further boosting the 3D representation generalizablity. EVE-NeRF attains state-of-the-art performance across various evaluation scenarios. Extensive experiments demonstate that, compared to prevailing single-dimensional aggregation, the entangled network excels in the accuracy of 3D scene geometry and appearance reconstruction.Our project page is //github.com/tatakai1/EVENeRF.

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.

The research in the field of music is rapidly growing, and this trend emphasizes the need for comprehensive data. Though researchers have made an effort to contribute their own datasets, many data collections lack the requisite inclusivity for comprehensive study because they are frequently focused on particular components of music or other specific topics. We have endeavored to address data scarcity by employing an instrument-based approach to provide a complete corpus related to the Persian piano. Our piano corpus includes relevant labels for Persian music mode (Dastgah) and comprehensive metadata, allowing for utilization in various popular research areas. The features extracted from 2022 Persian piano pieces in The Persian Piano Corpus (PPC) have been collected and made available to researchers, aiming for a more thorough understanding of Persian music and the role of the piano in it in subsequent steps.

This study addresses the deficiency in conventional music recommendation systems by focusing on the vital role of emotions in shaping users music choices. These systems often disregard the emotional context, relying predominantly on past listening behavior and failing to consider the dynamic and evolving nature of users emotional preferences. This gap leads to several limitations. Users may receive recommendations that do not match their current mood, which diminishes the quality of their music experience. Furthermore, without accounting for emotions, the systems might overlook undiscovered or lesser-known songs that have a profound emotional impact on users. To combat these limitations, this research introduces an AI model that incorporates emotional context into the song recommendation process. By accurately detecting users real-time emotions, the model can generate personalized song recommendations that align with the users emotional state. This approach aims to enhance the user experience by offering music that resonates with their current mood, elicits the desired emotions, and creates a more immersive and meaningful listening experience. By considering emotional context in the song recommendation process, the proposed model offers an opportunity for a more personalized and emotionally resonant musical journey.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司