亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exact diagonalization is a well-established method for simulating small quantum systems. Its applicability is limited by the exponential growth of the so-called Hamiltonian matrix that needs to be diagonalized. Physical symmetries are usually utilized to reduce the matrix dimension, and distributed-memory parallelism is employed to explore larger systems. This paper focuses on the implementation the core distributed algorithms, with a special emphasis on the matrix-vector product operation. Instead of the conventional MPI+X paradigm, Chapel is chosen as the language for these distributed algorithms. We provide a comprehensive description of the algorithms and present performance and scalability tests. Our implementation outperforms the state-of-the-art MPI-based solution by a factor of 7--8 on 32 compute nodes or 4096 cores and exhibits very good scaling on up to 256 nodes or 32768 cores. The implementation has 3 times fewer software lines of code than the current state of the art while remaining fully generic.

相關內容

Fairness holds a pivotal role in the realm of machine learning, particularly when it comes to addressing groups categorised by sensitive attributes, e.g., gender, race. Prevailing algorithms in fair learning predominantly hinge on accessibility or estimations of these sensitive attributes, at least in the training process. We design a single group-blind projection map that aligns the feature distributions of both groups in the source data, achieving (demographic) group parity, without requiring values of the protected attribute for individual samples in the computation of the map, as well as its use. Instead, our approach utilises the feature distributions of the privileged and unprivileged groups in a boarder population and the essential assumption that the source data are unbiased representation of the population. We present numerical results on synthetic data and real data.

The proliferation of data generation has spurred advancements in functional data analysis. With the ability to analyze multiple variables simultaneously, the demand for working with multivariate functional data has increased. This study proposes a novel formulation of the epigraph and hypograph indexes, as well as their generalized expressions, specifically tailored for the multivariate functional context. These definitions take into account the interrelations between components. Furthermore, the proposed indexes are employed to cluster multivariate functional data. In the clustering process, the indexes are applied to both the data and their first and second derivatives. This generates a reduced-dimension dataset from the original multivariate functional data, enabling the application of well-established multivariate clustering techniques which have been extensively studied in the literature. This methodology has been tested through simulated and real datasets, performing comparative analyses against state-of-the-art to assess its performance.

We study step-wise time approximations of non-linear hyperbolic initial value problems. The technique used here is a generalization of the minimizing movements method, using two time-scales: one for velocity, the other (potentially much larger) for acceleration. The main applications are from elastodynamics namely so-called generalized solids, undergoing large deformations. The evolution follows an underlying variational structure exploited by step-wise minimisation. We show for a large family of (elastic) energies that the introduced scheme is stable; allowing for non-linearities of highest order. If the highest order can assumed to be linear, we show that the limit solutions are regular and that the minimizing movements scheme converges with optimal linear rate. Thus this work extends numerical time-step minimization methods to the realm of hyperbolic problems.

Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.

Compliant mechanisms actuated by pneumatic loads are receiving increasing attention due to their direct applicability as soft robots that perform tasks using their flexible bodies. Using multiple materials to build them can further improve their performance and efficiency. Due to developments in additive manufacturing, the fabrication of multi-material soft robots is becoming a real possibility. To exploit this opportunity, there is a need for a dedicated design approach. This paper offers a systematic approach to developing such mechanisms using topology optimization. The extended SIMP scheme is employed for multi-material modeling. The design-dependent nature of the pressure load is modeled using the Darcy law with a volumetric drainage term. Flow coefficient of each element is interpolated using a smoothed Heaviside function. The obtained pressure field is converted to consistent nodal loads. The adjoint-variable approach is employed to determine the sensitivities. A robust formulation is employed, wherein a min-max optimization problem is formulated using the output displacements of the eroded and blueprint designs. Volume constraints are applied to the blueprint design, whereas the strain energy constraint is formulated with respect to the eroded design. The efficacy and success of the approach are demonstrated by designing pneumatically actuated multi-material gripper and contractor mechanisms. A numerical study confirms that multiple-material mechanisms perform relatively better than their single-material counterparts.

The accuracy of solving partial differential equations (PDEs) on coarse grids is greatly affected by the choice of discretization schemes. In this work, we propose to learn time integration schemes based on neural networks which satisfy three distinct sets of mathematical constraints, i.e., unconstrained, semi-constrained with the root condition, and fully-constrained with both root and consistency conditions. We focus on the learning of 3-step linear multistep methods, which we subsequently applied to solve three model PDEs, i.e., the one-dimensional heat equation, the one-dimensional wave equation, and the one-dimensional Burgers' equation. The results show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method. Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids. On a grid that is 4 times coarser than the reference grid, the mean square error shows a reduction of up to an order of magnitude for some of the heat equation cases, and a substantial improvement in phase prediction for the wave equation. On a 32 times coarser grid, the mean square error for the Burgers' equation can be reduced by up to 35% to 40%.

Achieving accurate approximations to solutions of large linear systems is crucial, especially when those systems utilize real-world data. A consequence of using real-world data is that there will inevitably be missingness. Current approaches for dealing with missing data, such as deletion and imputation, can introduce bias. Recent studies proposed an adaptation of stochastic gradient descent (SGD) in specific missing-data models. In this work, we propose a new algorithm, $\ell$-tuple mSGD, for the setting in which data is missing in a block-wise, tuple pattern. We prove that our proposed method uses unbiased estimates of the gradient of the least squares objective in the presence of tuple missing data. We also draw connections between $\ell$-tuple mSGD and previously established SGD-type methods for missing data. Furthermore, we prove our algorithm converges when using updating step sizes and empirically demonstrate the convergence of $\ell$-tuple mSGD on synthetic data. Lastly, we evaluate $\ell$-tuple mSGD applied to real-world continuous glucose monitoring (CGM) device data.

Classification of unlabeled data is usually achieved by supervised learning from labeled samples. Although there exist many sophisticated supervised machine learning methods that can predict the missing labels with a high level of accuracy, they often lack the required transparency in situations where it is important to provide interpretable results and meaningful measures of confidence. Body fluid classification of forensic casework data is the case in point. We develop a new Biclustering Dirichlet Process for Class-assignment with Random Matrices (BDP-CaRMa), with a three-level hierarchy of clustering, and a model-based approach to classification that adapts to block structure in the data matrix. As the class labels of some observations are missing, the number of rows in the data matrix for each class is unknown. BDP-CaRMa handles this and extends existing biclustering methods by simultaneously biclustering multiple matrices each having a randomly variable number of rows. We demonstrate our method by applying it to the motivating problem, which is the classification of body fluids based on mRNA profiles taken from crime scenes. The analyses of casework-like data show that our method is interpretable and produces well-calibrated posterior probabilities. Our model can be more generally applied to other types of data with a similar structure to the forensic data.

Complexity is a fundamental concept underlying statistical learning theory that aims to inform generalization performance. Parameter count, while successful in low-dimensional settings, is not well-justified for overparameterized settings when the number of parameters is more than the number of training samples. We revisit complexity measures based on Rissanen's principle of minimum description length (MDL) and define a novel MDL-based complexity (MDL-COMP) that remains valid for overparameterized models. MDL-COMP is defined via an optimality criterion over the encodings induced by a good Ridge estimator class. We provide an extensive theoretical characterization of MDL-COMP for linear models and kernel methods and show that it is not just a function of parameter count, but rather a function of the singular values of the design or the kernel matrix and the signal-to-noise ratio. For a linear model with $n$ observations, $d$ parameters, and i.i.d. Gaussian predictors, MDL-COMP scales linearly with $d$ when $d<n$, but the scaling is exponentially smaller -- $\log d$ for $d>n$. For kernel methods, we show that MDL-COMP informs minimax in-sample error, and can decrease as the dimensionality of the input increases. We also prove that MDL-COMP upper bounds the in-sample mean squared error (MSE). Via an array of simulations and real-data experiments, we show that a data-driven Prac-MDL-COMP informs hyper-parameter tuning for optimizing test MSE with ridge regression in limited data settings, sometimes improving upon cross-validation and (always) saving computational costs. Finally, our findings also suggest that the recently observed double decent phenomenons in overparameterized models might be a consequence of the choice of non-ideal estimators.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司