亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fairness holds a pivotal role in the realm of machine learning, particularly when it comes to addressing groups categorised by sensitive attributes, e.g., gender, race. Prevailing algorithms in fair learning predominantly hinge on accessibility or estimations of these sensitive attributes, at least in the training process. We design a single group-blind projection map that aligns the feature distributions of both groups in the source data, achieving (demographic) group parity, without requiring values of the protected attribute for individual samples in the computation of the map, as well as its use. Instead, our approach utilises the feature distributions of the privileged and unprivileged groups in a boarder population and the essential assumption that the source data are unbiased representation of the population. We present numerical results on synthetic data and real data.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · MoDELS · Neural Networks · 卷積 · 卷積神經網絡 ·
2023 年 12 月 1 日

Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.

In many practical control applications, the performance level of a closed-loop system degrades over time due to the change of plant characteristics. Thus, there is a strong need for redesigning a controller without going through the system modeling process, which is often difficult for closed-loop systems. Reinforcement learning (RL) is one of the promising approaches that enable model-free redesign of optimal controllers for nonlinear dynamical systems based only on the measurement of the closed-loop system. However, the learning process of RL usually requires a considerable number of trial-and-error experiments using the poorly controlled system that may accumulate wear on the plant. To overcome this limitation, we propose a model-free two-step design approach that improves the transient learning performance of RL in an optimal regulator redesign problem for unknown nonlinear systems. Specifically, we first design a linear control law that attains some degree of control performance in a model-free manner, and then, train the nonlinear optimal control law with online RL by using the designed linear control law in parallel. We introduce an offline RL algorithm for the design of the linear control law and theoretically guarantee its convergence to the LQR controller under mild assumptions. Numerical simulations show that the proposed approach improves the transient learning performance and efficiency in hyperparameter tuning of RL.

Many approaches have been proposed to use diffusion models to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large datasets, often with noisy annotations, and it remains an open question to which extent these models contribute to downstream classification performance. In particular, it remains unclear if they generalize enough to improve over directly using the additional data of their pre-training process for augmentation. We systematically evaluate a range of existing methods to generate images from diffusion models and study new extensions to assess their benefit for data augmentation. Personalizing diffusion models towards the target data outperforms simpler prompting strategies. However, using the pre-training data of the diffusion model alone, via a simple nearest-neighbor retrieval procedure, leads to even stronger downstream performance. Our study explores the potential of diffusion models in generating new training data, and surprisingly finds that these sophisticated models are not yet able to beat a simple and strong image retrieval baseline on simple downstream vision tasks.

In this paper, we consider the two-sample location shift model, a classic semiparametric model introduced by Stein (1956). This model is known for its adaptive nature, enabling nonparametric estimation with full parametric efficiency. Existing nonparametric estimators of the location shift often depend on external tuning parameters, which restricts their practical applicability (Van der Vaart and Wellner, 2021). We demonstrate that introducing an additional assumption of log-concavity on the underlying density can alleviate the need for tuning parameters. We propose a one step estimator for location shift estimation, utilizing log-concave density estimation techniques to facilitate tuning-free estimation of the efficient influence function. While we employ a truncated version of the one step estimator for theoretical adaptivity, our simulations indicate that the one step estimators perform best with zero truncation, eliminating the need for tuning during practical implementation.

Time-space tradeoff has been studied in a variety of models, such as Turing machines, branching programs, and finite automata, etc. While communication complexity as a technique has been applied to study finite automata, it seems it has not been used to study time-space tradeoffs of finite automata. We design a new technique showing that separations of query complexity can be lifted, via communication complexity, to separations of time-space complexity of two-way finite automata. As an application, one of our main results exhibits the first example of a language $L$ such that the time-space complexity of two-way probabilistic finite automata with a bounded error (2PFA) is $\widetilde{\Omega}(n^2)$, while of exact two-way quantum finite automata with classical states (2QCFA) is $\widetilde{O}(n^{5/3})$, that is, we demonstrate for the first time that exact quantum computing has an advantage in time-space complexity comparing to classical computing.

A powerful statistical interpolating concept, which we call \emph{fully lifted} (fl), is introduced and presented while establishing a connection between bilinearly indexed random processes and their corresponding fully decoupled (linearly indexed) comparative alternatives. Despite on occasion very involved technical considerations, the final interpolating forms and their underlying relations admit rather elegant expressions that provide conceivably highly desirable and useful tool for further studying various different aspects of random processes and their applications. We also discuss the generality of the considered models and show that they encompass many well known random structures and optimization problems to which then the obtained results automatically apply.

In semi-supervised learning, the prevailing understanding suggests that observing additional unlabeled samples improves estimation accuracy for linear parameters only in the case of model misspecification. This paper challenges this notion, demonstrating its inaccuracy in high dimensions. Initially focusing on a dense scenario, we introduce robust semi-supervised estimators for the regression coefficient without relying on sparse structures in the population slope. Even when the true underlying model is linear, we show that leveraging information from large-scale unlabeled data improves both estimation accuracy and inference robustness. Moreover, we propose semi-supervised methods with further enhanced efficiency in scenarios with a sparse linear slope. Diverging from the standard semi-supervised literature, we also allow for covariate shift. The performance of the proposed methods is illustrated through extensive numerical studies, including simulations and a real-data application to the AIDS Clinical Trials Group Protocol 175 (ACTG175).

Inverse imaging problems that are ill-posed can be encountered across multiple domains of science and technology, ranging from medical diagnosis to astronomical studies. To reconstruct images from incomplete and distorted data, it is necessary to create algorithms that can take into account both, the physical mechanisms responsible for generating these measurements and the intrinsic characteristics of the images being analyzed. In this work, the sparse representation of images is reviewed, which is a realistic, compact and effective generative model for natural images inspired by the visual system of mammals. It enables us to address ill-posed linear inverse problems by training the model on a vast collection of images. Moreover, we extend the application of sparse coding to solve the non-linear and ill-posed problem in microwave tomography imaging, which could lead to a significant improvement of the state-of-the-arts algorithms.

Unsupervised deep learning approaches have recently become one of the crucial research areas in imaging owing to their ability to learn expressive and powerful reconstruction operators even when paired high-quality training data is scarcely available. In this chapter, we review theoretically principled unsupervised learning schemes for solving imaging inverse problems, with a particular focus on methods rooted in optimal transport and convex analysis. We begin by reviewing the optimal transport-based unsupervised approaches such as the cycle-consistency-based models and learned adversarial regularization methods, which have clear probabilistic interpretations. Subsequently, we give an overview of a recent line of works on provably convergent learned optimization algorithms applied to accelerate the solution of imaging inverse problems, alongside their dedicated unsupervised training schemes. We also survey a number of provably convergent plug-and-play algorithms (based on gradient-step deep denoisers), which are among the most important and widely applied unsupervised approaches for imaging problems. At the end of this survey, we provide an overview of a few related unsupervised learning frameworks that complement our focused schemes. Together with a detailed survey, we provide an overview of the key mathematical results that underlie the methods reviewed in the chapter to keep our discussion self-contained.

In an acceptance monitoring system, acceptance sampling techniques are used to increase production, enhance control, and deliver higher-quality products at a lesser cost. It might not always be possible to define the acceptance sampling plan parameters as exact values, especially, when data has uncertainty. In this work, acceptance sampling plans for a large number of identical units with exponential lifetimes are obtained by treating acceptable quality life, rejectable quality life, consumer's risk, and producer's risk as fuzzy parameters. To obtain plan parameters of sequential sampling plans and repetitive group sampling plans, fuzzy hypothesis test is considered. To validate the sampling plans obtained in this work, some examples are presented. Our results are compared with existing results in the literature. Finally, to demonstrate the application of the resulting sampling plans, a real-life case study is presented.

北京阿比特科技有限公司