亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a multiple testing method that controls the median of the proportion of false discoveries (FDP) in a flexible way. Our method only requires a vector of p-values as input and is comparable to the Benjamini-Hochberg method, which controls the mean of the FDP. Benjamini-Hochberg requires choosing the target FDP alpha before looking at the data, but our method does not. For example, if using alpha=0.05 leads to no discoveries, alpha can be increased to 0.1. We further provide mFDP-adjusted p-values, which consequently also have a post hoc interpretation. The method does not assume independence and was valid in all considered simulation scenarios. The procedure is inspired by the popular estimator of the total number of true hypotheses by Schweder, Spj{\o}tvoll and Storey. We adapt this estimator to provide a median unbiased estimator of the FDP, first assuming that a fixed rejection threshold is used. Taking this as a starting point, we proceed to construct simultaneously median unbiased estimators of the FDP. This simultaneity allows for the claimed flexibility. Our method is powerful and its time complexity is linear in the number of hypotheses, after sorting the p-values.

相關內容

In this paper, we revisit the class of iterative shrinkage-thresholding algorithms (ISTA) for solving the linear inverse problem with sparse representation, which arises in signal and image processing. It is shown in the numerical experiment to deblur an image that the convergence behavior in the logarithmic-scale ordinate tends to be linear instead of logarithmic, approximating to be flat. Making meticulous observations, we find that the previous assumption for the smooth part to be convex weakens the least-square model. Specifically, assuming the smooth part to be strongly convex is more reasonable for the least-square model, even though the image matrix is probably ill-conditioned. Furthermore, we improve the pivotal inequality tighter for composite optimization with the smooth part to be strongly convex instead of general convex, which is first found in [Li et al., 2022]. Based on this pivotal inequality, we generalize the linear convergence to composite optimization in both the objective value and the squared proximal subgradient norm. Meanwhile, we set a simple ill-conditioned matrix which is easy to compute the singular values instead of the original blur matrix. The new numerical experiment shows the proximal generalization of Nesterov's accelerated gradient descent (NAG) for the strongly convex function has a faster linear convergence rate than ISTA. Based on the tighter pivotal inequality, we also generalize the faster linear convergence rate to composite optimization, in both the objective value and the squared proximal subgradient norm, by taking advantage of the well-constructed Lyapunov function with a slight modification and the phase-space representation based on the high-resolution differential equation framework from the implicit-velocity scheme.

Penalized likelihood models are widely used to simultaneously select variables and estimate model parameters. However, the existence of weak signals can lead to inaccurate variable selection, biased parameter estimation, and invalid inference. Thus, identifying weak signals accurately and making valid inferences are crucial in penalized likelihood models. We develop a unified approach to identify weak signals and make inferences in penalized likelihood models, including the special case when the responses are categorical. To identify weak signals, we use the estimated selection probability of each covariate as a measure of the signal strength and formulate a signal identification criterion. To construct confidence intervals, we propose a two-step inference procedure. Extensive simulation studies show that the proposed procedure outperforms several existing methods. We illustrate the proposed method by applying it to the Practice Fusion diabetes data set.

Imputing missing potential outcomes using an estimated regression function is a natural idea for estimating causal effects. In the literature, estimators that combine imputation and regression adjustments are believed to be comparable to augmented inverse probability weighting. Accordingly, people for a long time conjectured that such estimators, while avoiding directly constructing the weights, are also doubly robust (Imbens, 2004; Stuart, 2010). Generalizing an earlier result of the authors (Lin et al., 2021), this paper formalizes this conjecture, showing that a large class of regression-adjusted imputation methods are indeed doubly robust for estimating the average treatment effect. In addition, they are provably semiparametrically efficient as long as both the density and regression models are correctly specified. Notable examples of imputation methods covered by our theory include kernel matching, (weighted) nearest neighbor matching, local linear matching, and (honest) random forests.

One of the main limitations of the commonly used Absolute Trajectory Error (ATE) is that it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers varies. In this work, we propose an alternative error metric for evaluating the accuracy of the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE), is computed in four steps: (1) Shift the ground-truth and estimated trajectories such that both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory such that it minimizes the sum of geodesic distances between the corresponding camera orientations. (3) Scale the estimated trajectory such that the median distance of the cameras to their geometric median is the same as that of the ground truth. (4) Compute the distances between the corresponding cameras, and obtain the DTE by taking the average of the mean and root-mean-square (RMS) distance. This metric is an attractive alternative to the ATE, in that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error or the number of outliers varies. Using the similar idea, we also propose a novel rotation error metric, named Discernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-to-marker rotation, which is needed for the computation of our metrics. Our methods are verified through extensive simulations.

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone.

The goal of the group testing problem is to identify a set of defective items within a larger set of items, using suitably-designed tests whose outcomes indicate whether any defective item is present. In this paper, we study how the number of tests can be significantly decreased by leveraging the structural dependencies between the items, i.e., by incorporating prior information. To do so, we pursue two different perspectives: (i) As a generalization of the uniform combinatorial prior, we consider the case that the defective set is uniform over a \emph{subset} of all possible sets of a given size, and study how this impacts the information-theoretic limits on the number of tests for approximate recovery; (ii) As a generalization of the i.i.d.~prior, we introduce a new class of priors based on the Ising model, where the associated graph represents interactions between items. We show that this naturally leads to an Integer Quadratic Program decoder, which can be converted to an Integer Linear Program and/or relaxed to a non-integer variant for improved computational complexity, while maintaining strong empirical recovery performance.

In online sales, sellers usually offer each potential buyer a posted price in a take-it-or-leave fashion. Buyers can sometimes see posted prices faced by other buyers, and changing the price frequently could be considered unfair. The literature on posted price mechanisms and prophet inequality problems has studied the two extremes of pricing policies, the fixed price policy and fully dynamic pricing. The former is suboptimal in revenue but is perceived as fairer than the latter. This work examines the middle situation, where there are at most $k$ distinct prices over the selling horizon. Using the framework of prophet inequalities with independent and identically distributed random variables, we propose a new prophet inequality for strategies that use at most $k$ thresholds. We present asymptotic results in $k$ and results for small values of $k$. For $k=2$ prices, we show an improvement of at least $11\%$ over the best fixed-price solution. Moreover, $k=5$ prices suffice to guarantee almost $99\%$ of the approximation factor obtained by a fully dynamic policy that uses an arbitrary number of prices. From a technical standpoint, we use an infinite-dimensional linear program in our analysis; this formulation could be of independent interest to other online selection problems.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司