亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.

相關內容

We propose an individual claims reserving model based on the conditional Aalen-Johansen estimator, as developed in Bladt and Furrer (2023b). In our approach, we formulate a multi-state problem, where the underlying variable is the individual claim size, rather than time. The states in this model represent development periods, and we estimate the cumulative density function of individual claim sizes using the conditional Aalen-Johansen method as transition probabilities to an absorbing state. Our methodology reinterprets the concept of multi-state models and offers a strategy for modeling the complete curve of individual claim sizes. To illustrate our approach, we apply our model to both simulated and real datasets. Having access to the entire dataset enables us to support the use of our approach by comparing the predicted total final cost with the actual amount, as well as evaluating it in terms of the continuously ranked probability score.

Software agents, both human and computational, do not exist in isolation and often need to collaborate or coordinate with others to achieve their goals. In human society, social mechanisms such as norms ensure efficient functioning, and these techniques have been adopted by researchers in multi-agent systems (MAS) to create socially aware agents. However, traditional techniques have limitations, such as operating in limited environments often using brittle symbolic reasoning. The advent of Large Language Models (LLMs) offers a promising solution, providing a rich and expressive vocabulary for norms and enabling norm-capable agents that can perform a range of tasks such as norm discovery, normative reasoning and decision-making. This paper examines the potential of LLM-based agents to acquire normative capabilities, drawing on recent Natural Language Processing (NLP) and LLM research. We present our vision for creating normative LLM agents. In particular, we discuss how the recently proposed "LLM agent" approaches can be extended to implement such normative LLM agents. We also highlight challenges in this emerging field. This paper thus aims to foster collaboration between MAS, NLP and LLM researchers in order to advance the field of normative agents.

We propose a type-theoretic framework for describing and proving properties of quantum computations, in particular those presented as quantum circuits. Our proposal is based on an observation that, in the polymorphic type system of Coq, currying on quantum states allows us to apply quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control this currying, we are further able to separate the combinatorics of the circuit structure from the computational content of gates. We apply our development to define quantum circuits recursively from the bottom up, and prove their correctness compositionally.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

For multivariate data, tandem clustering is a well-known technique aiming to improve cluster identification through initial dimension reduction. Nevertheless, the usual approach using principal component analysis (PCA) has been criticized for focusing solely on inertia so that the first components do not necessarily retain the structure of interest for clustering. To address this limitation, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while providing affine invariant components. Certain theoretical results have been previously derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. However, ICS has garnered minimal attention within the context of clustering. Two challenges associated with ICS include choosing the pair of scatter matrices and selecting the components to retain. For effective clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix capturing the within-cluster structure and another capturing the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully chosen subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure in the data. In an extensive simulation study and empirical applications with benchmark data sets, various combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the PCA-based approach.

This paper considers computational methods that split a vector field into three components in the case when both the vector field and the split components might be unbounded. We first employ classical Taylor expansion which, after some algebra, results in an expression for a second-order splitting which, strictly speaking, makes sense only for bounded operators. Next, using an alternative approach, we derive an error expression and an error bound in the same setting which are however valid in the presence of unbounded operators. While the paper itself is concerned with second-order splittings using three components, the method of proof in the presence of unboundedness remains valid (although significantly more complicated) in a more general scenario, which will be the subject of a forthcoming paper.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Printing custom DNA sequences is essential to scientific and biomedical research, but the technology can be used to manufacture plagues as well as cures. Just as ink printers recognize and reject attempts to counterfeit money, DNA synthesizers and assemblers should deny unauthorized requests to make viral DNA that could be used to ignite a pandemic. There are three complications. First, we don't need to quickly update printers to deal with newly discovered currencies, whereas we regularly learn of new viruses and other biological threats. Second, anti-counterfeiting specifications on a local printer can't be extracted and misused by malicious actors, unlike information on biological threats. Finally, any screening must keep the inspected DNA sequences private, as they may constitute valuable trade secrets. Here we describe SecureDNA, a free, privacy-preserving, and fully automated system capable of verifiably screening all DNA synthesis orders of 30+ base pairs against an up-to-date database of hazards, and its operational performance and specificity when applied to 67 million base pairs of DNA synthesized by providers in the United States, Europe, and China.

This paper presents a method for future motion prediction of multi-agent systems by including group formation information and future intent. Formation of groups depends on a physics-based clustering method that follows the agglomerative hierarchical clustering algorithm. We identify clusters that incorporate the minimum cost-to-go function of a relevant optimal control problem as a metric for clustering between the groups among agents, where groups with similar associated costs are assumed to be likely to move together. The cost metric accounts for proximity to other agents as well as the intended goal of each agent. An unscented Kalman filter based approach is used to update the established clusters as well as add new clusters when new information is obtained. Our approach is verified through non-trivial numerical simulations implementing the proposed algorithm on different datasets pertaining to a variety of scenarios and agents.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司