亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blockchain-based IoT systems can manage IoT devices and achieve a high level of data integrity, security, and provenance. However, incorporating the existing consensus protocols in many IoT systems limits scalability and leads to high computational cost and network latency. We propose a hierar-chical and location-aware consensus protocol for IoI-blockchain applications inspired by the original Raft protocol to address these limitations. The proposed consensus protocol generates the consensus candidate groups based on nodes' individual reputation and distance information to elect the leader in each sub-layer blockchain and uses our threshold signature scheme to reach global consensus. Experimental results show that the proposed consensus protocol is scalable for large IoT applications and significantly reduces the communication cost, network latency, and agreement time by more than 50% compared with the Raft protocol for consensus processing.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Deep learning has fundamentally transformed artificial intelligence, but the ever-increasing complexity in deep learning models calls for specialized hardware accelerators. Optical accelerators can potentially offer enhanced performance, scalability, and energy efficiency. However, achieving nonlinear mapping, a critical component of neural networks, remains challenging optically. Here, we introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping, without the need for additional laser power. A key advantage emerging from our work is that we show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information while also decreasing data dimensionality. This allows rapid optical information processing and generation of low dimensional mixtures of highly nonlinear features. These are particularly useful for applications demanding high-speed analysis and responses such as in edge computing devices. Utilizing rapid optical information processing capabilities, our optical platforms could potentially offer more efficient and real-time processing solutions for a broad range of applications. We demonstrate the efficacy of our design in improving computational performance across tasks, including classification, image reconstruction, key-point detection, and object detection, all achieved through optical data compression combined with a digital decoder. Notably, we observed high performance, at an extreme compression ratio, for real-time pedestrian detection. Our findings pave the way for novel algorithms and architectural designs for optical computing.

Curating an informative and representative dataset is essential for enhancing the performance of 2D object detectors. We present a novel active learning sampling strategy that addresses both the informativeness and diversity of the selections. Our strategy integrates uncertainty and diversity-based selection principles into a joint selection objective by measuring the collective information score of the selected samples. Specifically, our proposed NORIS algorithm quantifies the impact of training with a sample on the informativeness of other similar samples. By exclusively selecting samples that are simultaneously informative and distant from other highly informative samples, we effectively avoid redundancy while maintaining a high level of informativeness. Moreover, instead of utilizing whole image features to calculate distances between samples, we leverage features extracted from detected object regions within images to define object features. This allows us to construct a dataset encompassing diverse object types, shapes, and angles. Extensive experiments on object detection and image classification tasks demonstrate the effectiveness of our strategy over the state-of-the-art baselines. Specifically, our selection strategy achieves a 20% and 30% reduction in labeling costs compared to random selection for PASCAL-VOC and KITTI, respectively.

This paper presents a novel framework called HST for semi-supervised video object segmentation (VOS). HST extracts image and video features using the latest Swin Transformer and Video Swin Transformer to inherit their inductive bias for the spatiotemporal locality, which is essential for temporally coherent VOS. To take full advantage of the image and video features, HST casts image and video features as a query and memory, respectively. By applying efficient memory read operations at multiple scales, HST produces hierarchical features for the precise reconstruction of object masks. HST shows effectiveness and robustness in handling challenging scenarios with occluded and fast-moving objects under cluttered backgrounds. In particular, HST-B outperforms the state-of-the-art competitors on multiple popular benchmarks, i.e., YouTube-VOS (85.0%), DAVIS 2017 (85.9%), and DAVIS 2016 (94.0%).

Location determination finds wide applications in daily life. Instead of existing efforts devoted to localizing tourist photos captured by perspective cameras, in this article, we focus on devising person positioning solutions using overhead fisheye cameras. Such solutions are advantageous in large field of view (FOV), low cost, anti-occlusion, and unaggressive work mode (without the necessity of cameras carried by persons). However, related studies are quite scarce, due to the paucity of data. To stimulate research in this exciting area, we present LOAF, the first large-scale overhead fisheye dataset for person detection and localization. LOAF is built with many essential features, e.g., i) the data cover abundant diversities in scenes, human pose, density, and location; ii) it contains currently the largest number of annotated pedestrian, i.e., 457K bounding boxes with groundtruth location information; iii) the body-boxes are labeled as radius-aligned so as to fully address the positioning challenge. To approach localization, we build a fisheye person detection network, which exploits the fisheye distortions by a rotation-equivariant training strategy and predict radius-aligned human boxes end-to-end. Then, the actual locations of the detected persons are calculated by a numerical solution on the fisheye model and camera altitude data. Extensive experiments on LOAF validate the superiority of our fisheye detector w.r.t. previous methods, and show that our whole fisheye positioning solution is able to locate all persons in FOV with an accuracy of 0.5 m, within 0.1 s.

The vast amounts of data collected in various domains pose great challenges to modern data exploration and analysis. To find "interesting" objects in large databases, users typically define a query using positive and negative example objects and train a classification model to identify the objects of interest in the entire data catalog. However, this approach requires a scan of all the data to apply the classification model to each instance in the data catalog, making this method prohibitively expensive to be employed in large-scale databases serving many users and queries interactively. In this work, we propose a novel framework for such search-by-classification scenarios that allows users to interactively search for target objects by specifying queries through a small set of positive and negative examples. Unlike previous approaches, our framework can rapidly answer such queries at low cost without scanning the entire database. Our framework is based on an index-aware construction scheme for decision trees and random forests that transforms the inference phase of these classification models into a set of range queries, which in turn can be efficiently executed by leveraging multidimensional indexing structures. Our experiments show that queries over large data catalogs with hundreds of millions of objects can be processed in a few seconds using a single server, compared to hours needed by classical scanning-based approaches.

In this work, we propose a communication-efficient hierarchical federated learning algorithm for distributed setups including core servers and multiple edge servers with clusters of devices. Assuming different learning tasks, clusters with a same task collaborate. To implement the algorithm over wireless links, we propose a scalable clustered over-the-air aggregation scheme for the uplink with a bandwidth-limited broadcast scheme for the downlink that requires only a single resource block for each algorithm iteration, independent of the number of edge servers and devices. This setup is faced with interference of devices in the uplink and interference of edge servers in the downlink that are to be modeled rigorously. We first develop a spatial model for the setup by modeling devices as a Poisson cluster process over the edge servers and quantify uplink and downlink error terms due to the interference. Accordingly, we present a comprehensive mathematical approach to derive the convergence bound for the proposed algorithm including any number of collaborating clusters and provide special cases and design remarks. Finally, we show that despite the interference and data heterogeneity, the proposed algorithm not only achieves high learning accuracy for a variety of parameters but also significantly outperforms the conventional hierarchical learning algorithm.

A blockchain-based framework for distributed agile software testing life cycle is an innovative approach that uses blockchain technology to optimize the software testing process. Previously, various methods were employed to address communication and collaboration challenges in software testing, but they were deficient in aspects such as trust, traceability, and security. Additionally, a significant cause of project failure was the non-completion of unit testing by developers, leading to delayed testing. This paper integration of blockchain technology in software testing resolves critical concerns related to transparency, trust, coordination, and communication. We have proposed a blockchain based framework named as TestingPlus. TestingPlus framework utilizes blockchain technology to provide a secure and transparent platform for acceptance testing and payment verification. By leveraging smart contracts on a private Ethereum blockchain, TestingPlus can help to ensure that both the testing team and the development team are working towards a common goal and are compensated fairly for their contributions.

Federated learning (FL) has evolved as a prominent method for edge devices to cooperatively create a unified prediction model while securing their sensitive training data local to the device. Despite the existence of numerous research frameworks for simulating FL algorithms, they do not facilitate comprehensive deployment for automatic speech recognition tasks on heterogeneous edge devices. This is where Ed-Fed, a comprehensive and generic FL framework, comes in as a foundation for future practical FL system research. We also propose a novel resource-aware client selection algorithm to optimise the waiting time in the FL settings. We show that our approach can handle the straggler devices and dynamically set the training time for the selected devices in a round. Our evaluation has shown that the proposed approach significantly optimises waiting time in FL compared to conventional random client selection methods.

Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

北京阿比特科技有限公司