亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This academic paper examines the strategic interactions between Japan, other nations, and the International Atomic Energy Agency (IAEA) regarding Japan's decision to release treated nuclear wastewater from the Fukushima Daiichi Nuclear Power Plant into the sea. It introduces a payoff matrix and time-delay elements in replicator dynamic equations to mirror real-world decision-making delays. The paper analyzes the stability of strategies and conditions for different stable states using characteristic roots of a linearized system and numerical simulations. It concludes that time delays significantly affect decision-making stability and evolution trajectories in nuclear wastewater disposal strategies. The study highlights the importance of efficient wastewater treatment technology, the impact of export tax revenue losses on Japan's strategies, and the role of international cooperation. The novelty of the research lies in integrating time-delay elements from ocean dynamics and governmental decision-making into the game-theoretical model.

相關內容

GitHub 發布的文本編輯器。

This study delves into the potential use of Large Language Models (LLMs) for generating Library of Congress Subject Headings (LCSH). The authors employed ChatGPT to generate subject headings for electronic theses and dissertations (ETDs) based on their titles and summaries. The results revealed that although some generated subject headings were valid, there were issues regarding specificity and exhaustiveness. The study showcases that LLMs can serve as a strategic response to the backlog of items awaiting cataloging in academic libraries, while also offering a cost-effective approach for promptly generating LCSH. Nonetheless, human catalogers remain essential for verifying and enhancing the validity, exhaustiveness, and specificity of LCSH generated by LLMs.

The computational treatment of arguments on controversial issues has been subject to extensive NLP research, due to its envisioned impact on opinion formation, decision making, writing education, and the like. A critical task in any such application is the assessment of an argument's quality - but it is also particularly challenging. In this position paper, we start from a brief survey of argument quality research, where we identify the diversity of quality notions and the subjectiveness of their perception as the main hurdles towards substantial progress on argument quality assessment. We argue that the capabilities of instruction-following large language models (LLMs) to leverage knowledge across contexts enable a much more reliable assessment. Rather than just fine-tuning LLMs towards leaderboard chasing on assessment tasks, they need to be instructed systematically with argumentation theories and scenarios as well as with ways to solve argument-related problems. We discuss the real-world opportunities and ethical issues emerging thereby.

In the rapidly advancing field of artificial intelligence, the concept of Red-Teaming or Jailbreaking large language models (LLMs) has emerged as a crucial area of study. This approach is especially significant in terms of assessing and enhancing the safety and robustness of these models. This paper investigates the intricate consequences of such modifications through model editing, uncovering a complex relationship between enhancing model accuracy and preserving its ethical integrity. Our in-depth analysis reveals a striking paradox: while injecting accurate information is crucial for model reliability, it can paradoxically destabilize the model's foundational framework, resulting in unpredictable and potentially unsafe behaviors. Additionally, we propose a benchmark dataset NicheHazardQA to investigate this unsafe behavior both within the same and cross topical domain. This aspect of our research sheds light on how the edits, impact the model's safety metrics and guardrails. Our findings show that model editing serves as a cost-effective tool for topical red-teaming by methodically applying targeted edits and evaluating the resultant model behavior.

Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of $k$ patches, each of dimension $d$, and the label is determined by a $d$-sparse signal vector that can freely appear in any one of the $k$ patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require $\tilde{O}(k+d)$ samples, whereas LCNs require $\Omega(kd)$ samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need $\tilde{O}(k(k+d))$ samples, compared to $\Omega(k^2d)$ samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.

This paper aims to clearly distinguish between Stochastic Gradient Descent with Momentum (SGDM) and Adam in terms of their convergence rates. We demonstrate that Adam achieves a faster convergence compared to SGDM under the condition of non-uniformly bounded smoothness. Our findings reveal that: (1) in deterministic environments, Adam can attain the known lower bound for the convergence rate of deterministic first-order optimizers, whereas the convergence rate of Gradient Descent with Momentum (GDM) has higher order dependence on the initial function value; (2) in stochastic setting, Adam's convergence rate upper bound matches the lower bounds of stochastic first-order optimizers, considering both the initial function value and the final error, whereas there are instances where SGDM fails to converge with any learning rate. These insights distinctly differentiate Adam and SGDM regarding their convergence rates. Additionally, by introducing a novel stopping-time based technique, we further prove that if we consider the minimum gradient norm during iterations, the corresponding convergence rate can match the lower bounds across all problem hyperparameters. The technique can also help proving that Adam with a specific hyperparameter scheduler is parameter-agnostic, which hence can be of independent interest.

We present a historical outline of the research and developments of Virtual Reality at the Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt, Germany, from 1990 through 2000.

This study presents NewsBench, a novel benchmark framework developed to evaluate the capability of Large Language Models (LLMs) in Chinese Journalistic Writing Proficiency (JWP) and their Safety Adherence (SA), addressing the gap between journalistic ethics and the risks associated with AI utilization. Comprising 1,267 tasks across 5 editorial applications, 7 aspects (including safety and journalistic writing with 4 detailed facets), and spanning 24 news topics domains, NewsBench employs two GPT-4 based automatic evaluation protocols validated by human assessment. Our comprehensive analysis of 10 LLMs highlighted GPT-4 and ERNIE Bot as top performers, yet revealed a relative deficiency in journalistic ethic adherence during creative writing tasks. These findings underscore the need for enhanced ethical guidance in AI-generated journalistic content, marking a step forward in aligning AI capabilities with journalistic standards and safety considerations.

Temporal graphs naturally model graphs whose underlying topology changes over time. Recently, the problems TEMPORAL VERTEX COVER (or TVC) and SLIDING-WINDOW TEMPORAL VERTEX COVER(or $\Delta$-TVC for time-windows of a fixed-length $\Delta$) have been established as natural extensions of the classic problem VERTEX COVER on static graphs with connections to areas such as surveillance in sensor networks. In this paper we initiate a systematic study of the complexity of TVC and $\Delta$-TVC on sparse graphs. Our main result shows that for every $\Delta\geq 2$, $\Delta$-TVC is NP-hard even when the underlying topology is described by a path or a cycle. This resolves an open problem from literature and shows a surprising contrast between $\Delta$-TVC and TVC for which we provide a polynomial-time algorithm in the same setting. To circumvent this hardness, we present a number of exact and approximation algorithms for temporal graphs whose underlying topologies are given by a path, that have bounded vertex degree in every time step, or that admit a small-sized temporal vertex cover.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司