Stockpiles are essential in the mining value chain, assisting in maximising value and production. Quality control of taken minerals from the stockpiles is a major concern for stockpile managers where failure to meet some requirements can lead to losing money. This problem was recently investigated using a single reclaimer, and basic assumptions. This study extends the approach to consider multiple reclaimers in preparing for short and long-term deliveries. The engagement of multiple reclaimers complicates the problem in terms of their interaction in preparing a delivery simultaneously and safety distancing of reclaimers. We also consider more realistic settings, such as handling different minerals with different types of reclaimers. We propose methods that construct a solution step by step to meet precedence constraints for all reclaimers in the stockyard. We study various instances of the problem using greedy algorithms, Ant Colony Optimisation (ACO), and propose an integrated local search method determining an efficient schedule. We fine-tune and compare the algorithms and show that the ACO combined with local search can yield efficient solutions.
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, both players' actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL based on the principle "Optimism-in-Face-of-Uncertainty". Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally efficient. Specifically, we show that Nash-UCRL can provably achieve an $\tilde{O}(dH\sqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To assess the optimality of our algorithm, we also prove an $\tilde{\Omega}( dH\sqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.
Although Transformers have gained success in several speech processing tasks like spoken language understanding (SLU) and speech translation (ST), achieving online processing while keeping competitive performance is still essential for real-world interaction. In this paper, we take the first step on streaming SLU and simultaneous ST using a blockwise streaming Transformer, which is based on contextual block processing and blockwise synchronous beam search. Furthermore, we design an automatic speech recognition (ASR)-based intermediate loss regularization for the streaming SLU task to improve the classification performance further. As for the simultaneous ST task, we propose a cross-lingual encoding method, which employs a CTC branch optimized with target language translations. In addition, the CTC translation output is also used to refine the search space with CTC prefix score, achieving joint CTC/attention simultaneous translation for the first time. Experiments for SLU are conducted on FSC and SLURP corpora, while the ST task is evaluated on Fisher-CallHome Spanish and MuST-C En-De corpora. Experimental results show that the blockwise streaming Transformer achieves competitive results compared to offline models, especially with our proposed methods that further yield a 2.4% accuracy gain on the SLU task and a 4.3 BLEU gain on the ST task over streaming baselines.
In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.
Video summarization intends to produce a concise video summary by effectively capturing and combining the most informative parts of the whole content. Existing approaches for video summarization regard the task as a frame-wise keyframe selection problem and generally construct the frame-wise representation by combining the long-range temporal dependency with the unimodal or bimodal information. However, the optimal video summaries need to reflect the most valuable keyframe with its own information, and one with semantic power of the whole content. Thus, it is critical to construct a more powerful and robust frame-wise representation and predict the frame-level importance score in a fair and comprehensive manner. To tackle the above issues, we propose a multimodal hierarchical shot-aware convolutional network, denoted as MHSCNet, to enhance the frame-wise representation via combining the comprehensive available multimodal information. Specifically, we design a hierarchical ShotConv network to incorporate the adaptive shot-aware frame-level representation by considering the short-range and long-range temporal dependency. Based on the learned shot-aware representations, MHSCNet can predict the frame-level importance score in the local and global view of the video. Extensive experiments on two standard video summarization datasets demonstrate that our proposed method consistently outperforms state-of-the-art baselines. Source code will be made publicly available.
Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.
Continual learning (CL) aims to develop techniques by which a single model adapts to an increasing number of tasks encountered sequentially, thereby potentially leveraging learnings across tasks in a resource-efficient manner. A major challenge for CL systems is catastrophic forgetting, where earlier tasks are forgotten while learning a new task. To address this, replay-based CL approaches maintain and repeatedly retrain on a small buffer of data selected across encountered tasks. We propose Gradient Coreset Replay (GCR), a novel strategy for replay buffer selection and update using a carefully designed optimization criterion. Specifically, we select and maintain a "coreset" that closely approximates the gradient of all the data seen so far with respect to current model parameters, and discuss key strategies needed for its effective application to the continual learning setting. We show significant gains (2%-4% absolute) over the state-of-the-art in the well-studied offline continual learning setting. Our findings also effectively transfer to online / streaming CL settings, showing upto 5% gains over existing approaches. Finally, we demonstrate the value of supervised contrastive loss for continual learning, which yields a cumulative gain of up to 5% accuracy when combined with our subset selection strategy.
Integer programs provide a powerful abstraction for representing a wide range of real-world scheduling problems. Despite their ability to model general scheduling problems, solving large-scale integer programs (IP) remains a computational challenge in practice. The incorporation of more complex objectives such as robustness to disruptions further exacerbates the computational challenge. We present NICE (Neural network IP Coefficient Extraction), a novel technique that combines reinforcement learning and integer programming to tackle the problem of robust scheduling. More specifically, NICE uses reinforcement learning to approximately represent complex objectives in an integer programming formulation. We use NICE to determine assignments of pilots to a flight crew schedule so as to reduce the impact of disruptions. We compare NICE with (1) a baseline integer programming formulation that produces a feasible crew schedule, and (2) a robust integer programming formulation that explicitly tries to minimize the impact of disruptions. Our experiments show that, across a variety of scenarios, NICE produces schedules resulting in 33% to 48% fewer disruptions than the baseline formulation. Moreover, in more severely constrained scheduling scenarios in which the robust integer program fails to produce a schedule within 90 minutes, NICE is able to build robust schedules in less than 2 seconds on average.
Task graphs provide a simple way to describe scientific workflows (sets of tasks with dependencies) that can be executed on both HPC clusters and in the cloud. An important aspect of executing such graphs is the used scheduling algorithm. Many scheduling heuristics have been proposed in existing works; nevertheless, they are often tested in oversimplified environments. We provide an extensible simulation environment designed for prototyping and benchmarking task schedulers, which contains implementations of various scheduling algorithms and is open-sourced, in order to be fully reproducible. We use this environment to perform a comprehensive analysis of workflow scheduling algorithms with a focus on quantifying the effect of scheduling challenges that have so far been mostly neglected, such as delays between scheduler invocations or partially unknown task durations. Our results indicate that network models used by many previous works might produce results that are off by an order of magnitude in comparison to a more realistic model. Additionally, we show that certain implementation details of scheduling algorithms which are often neglected can have a large effect on the scheduler's performance, and they should thus be described in great detail to enable proper evaluation.