亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive an extension of the sequential homotopy method that allows for the application of inexact Krylov methods for the linear (double) saddle-point systems arising in the local semismooth Newton method for the homotopy subproblems. For the class of problems that exhibit (after suitable partitioning of the variables) a zero in the off-diagonal blocks of the Hessian of the Lagrangian, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. For discretized optimal control problems with PDE constraints, this structure is often present with the canonical partitioning of the variables in states and controls. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method is faster than using direct linear algebra for the 2D benchmark and allows for the parallel solution of large 3D problems.

相關內容

We extend classical methods of computational complexity to the setting of distributed computing, where they prove even more effective in some respects than in their original context. Instead of a single computer, several networked computers communicate via synchronous message-passing to collectively solve some decision problem related to the network topology. Their running time is limited in two ways: the number of communication rounds is bounded by a constant, and the number of computation steps of each computer is polynomially bounded by the size of its local input and the messages it receives. By letting two players take turns assigning certificates to the computers, we obtain a generalization of the polynomial hierarchy (and hence of the complexity classes $\mathbf{P}$ and $\mathbf{NP}$). We then extend some key results of complexity theory to this setting, in particular the Cook-Levin theorem (which identifies Boolean satisfiability as a complete problem for $\mathbf{NP}$), and Fagin's theorem (which characterizes $\mathbf{NP}$ as the problems expressible in existential second-order logic). The original results can be recovered as the special case where the network consists of a single computer. But perhaps more surprisingly, the task of separating complexity classes becomes easier in the general case: we can show that our hierarchy is infinite, while it remains notoriously open whether the same is true in the case of a single computer. (By contrast, a collapse of our hierarchy would have implied a collapse of the polynomial hierarchy.) As an application, we propose quantifier alternation as a new approach to measuring the locality of problems in distributed computing.

Orbifolds are a modern mathematical concept that arises in the research of hyperbolic geometry with applications in computer graphics and visualization. In this paper, we make use of rooms with mirrors as the visual metaphor for orbifolds. Given any arbitrary two-dimensional kaleidoscopic orbifold, we provide an algorithm to construct a Euclidean, spherical, or hyperbolic polygon to match the orbifold. This polygon is then used to create a room for which the polygon serves as the floor and the ceiling. With our system that implements M\"obius transformations, the user can interactively edit the scene and see the reflections of the edited objects. To correctly visualize non-Euclidean orbifolds, we adapt the rendering algorithms to account for the geodesics in these spaces, which light rays follow. Our interactive orbifold design system allows the user to create arbitrary two-dimensional kaleidoscopic orbifolds. In addition, our mirror-based orbifold visualization approach has the potential of helping our users gain insight on the orbifold, including its orbifold notation as well as its universal cover, which can also be the spherical space and the hyperbolic space.

The objective of topic inference in research proposals aims to obtain the most suitable disciplinary division from the discipline system defined by a funding agency. The agency will subsequently find appropriate peer review experts from their database based on this division. Automated topic inference can reduce human errors caused by manual topic filling, bridge the knowledge gap between funding agencies and project applicants, and improve system efficiency. Existing methods focus on modeling this as a hierarchical multi-label classification problem, using generative models to iteratively infer the most appropriate topic information. However, these methods overlook the gap in scale between interdisciplinary research proposals and non-interdisciplinary ones, leading to an unjust phenomenon where the automated inference system categorizes interdisciplinary proposals as non-interdisciplinary, causing unfairness during the expert assignment. How can we address this data imbalance issue under a complex discipline system and hence resolve this unfairness? In this paper, we implement a topic label inference system based on a Transformer encoder-decoder architecture. Furthermore, we utilize interpolation techniques to create a series of pseudo-interdisciplinary proposals from non-interdisciplinary ones during training based on non-parametric indicators such as cross-topic probabilities and topic occurrence probabilities. This approach aims to reduce the bias of the system during model training. Finally, we conduct extensive experiments on a real-world dataset to verify the effectiveness of the proposed method. The experimental results demonstrate that our training strategy can significantly mitigate the unfairness generated in the topic inference task.

In volume rendering, transfer functions are used to classify structures of interest, and to assign optical properties such as color and opacity. They are commonly defined as 1D or 2D functions that map simple features to these optical properties. As the process of designing a transfer function is typically tedious and unintuitive, several approaches have been proposed for their interactive specification. In this paper, we present a novel method to define transfer functions for volume rendering by leveraging the feature extraction capabilities of self-supervised pre-trained vision transformers. To design a transfer function, users simply select the structures of interest in a slice viewer, and our method automatically selects similar structures based on the high-level features extracted by the neural network. Contrary to previous learning-based transfer function approaches, our method does not require training of models and allows for quick inference, enabling an interactive exploration of the volume data. Our approach reduces the amount of necessary annotations by interactively informing the user about the current classification, so they can focus on annotating the structures of interest that still require annotation. In practice, this allows users to design transfer functions within seconds, instead of minutes. We compare our method to existing learning-based approaches in terms of annotation and compute time, as well as with respect to segmentation accuracy. Our accompanying video showcases the interactivity and effectiveness of our method.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed.

Momentum space transformations for incommensurate 2D electronic structure calculations are fundamental for reducing computational cost and for representing the data in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model. However, these transformations can be difficult to implement in more complex systems such as when mechanical relaxation patterns are present. In this work, we aim for two objectives. Firstly, we strive to simplify the understanding and implementation of this transformation by rigorously writing the transformations between the four relevant spaces, which we denote real space, configuration space, momentum space, and reciprocal space. This provides a straight-forward algorithm for writing the complex momentum space model from the original real space model. Secondly, we implement this for twisted bilayer graphene with mechanical relaxation affects included. We also analyze the convergence rates of the approximations, and show the tight-binding coupling range increases for smaller relative twists between layers, demonstrating that the 3-nearest neighbor coupling of the Bistritzer-MacDonald model is insufficient when mechanical relaxation is included for very small angles. We quantify this and verify with numerical simulation.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司