亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recognising emotions in context involves identifying the apparent emotions of an individual, taking into account contextual cues from the surrounding scene. Previous approaches to this task have involved the design of explicit scene-encoding architectures or the incorporation of external scene-related information, such as captions. However, these methods often utilise limited contextual information or rely on intricate training pipelines. In this work, we leverage the groundbreaking capabilities of Vision-and-Large-Language Models (VLLMs) to enhance in-context emotion classification without introducing complexity to the training process in a two-stage approach. In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion relative to the visual context. In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture that fuses text and visual features before the final classification task. Our experimental results show that the text and image features have complementary information, and our fused architecture significantly outperforms the individual modalities without any complex training methods. We evaluate our approach on three different datasets, namely, EMOTIC, CAER-S, and BoLD, and achieve state-of-the-art or comparable accuracy across all datasets and metrics compared to much more complex approaches. The code will be made publicly available on github: //github.com/NickyFot/EmoCommonSense.git

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · GPT-4 · 知識 (knowledge) · MoDELS · 語言模型化 ·
2024 年 5 月 24 日

Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) like GPT-4 introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset of 166 papers from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date, encompassing 3,066 references in total. In our experiment, GPT-4 was tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias in GPT-4, which persists even after controlling for publication year, title length, number of authors, and venue. Additionally, we observe a large consistency between the characteristics of GPT-4's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended by GPT-4 are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases and introduce new ones, potentially skewing scientific knowledge dissemination. Our results underscore the need for identifying the model's biases and for developing balanced methods to interact with LLMs in general.

Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformity, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.

Instrumental variables (IVs) provide a powerful strategy for identifying causal effects in the presence of unobservable confounders. Within the nonparametric setting (NPIV), recent methods have been based on nonlinear generalizations of Two-Stage Least Squares and on minimax formulations derived from moment conditions or duality. In a novel direction, we show how to formulate a functional stochastic gradient descent algorithm to tackle NPIV regression by directly minimizing the populational risk. We provide theoretical support in the form of bounds on the excess risk, and conduct numerical experiments showcasing our method's superior stability and competitive performance relative to current state-of-the-art alternatives. This algorithm enables flexible estimator choices, such as neural networks or kernel based methods, as well as non-quadratic loss functions, which may be suitable for structural equations beyond the setting of continuous outcomes and additive noise. Finally, we demonstrate this flexibility of our framework by presenting how it naturally addresses the important case of binary outcomes, which has received far less attention by recent developments in the NPIV literature.

Standard common factor models, such as the linear normal factor model, rely on strict parametric assumptions, which require rigorous model-data fit assessment to prevent fallacious inferences. However, overall goodness-of-fit diagnostics conventionally used in factor analysis do not offer diagnostic information on where the misfit originates. In the current work, we propose a new fit assessment framework for common factor models by extending the theory of generalized residuals (Haberman & Sinharay, 2013). This framework allows for the flexible adaptation of test statistics to identify various sources of misfit. In addition, the resulting goodness-of-fit tests provide more informative diagnostics, as the evaluation is performed conditionally on latent variables. Several examples of test statistics suitable for assessing various model assumptions are presented within this framework, and their performance is evaluated by simulation studies and a real data example.

Recent work has proposed the linear representation hypothesis: that language models perform computation by manipulating one-dimensional representations of concepts ("features") in activation space. In contrast, we explore whether some language model representations may be inherently multi-dimensional. We begin by developing a rigorous definition of irreducible multi-dimensional features based on whether they can be decomposed into either independent or non-co-occurring lower-dimensional features. Motivated by these definitions, we design a scalable method that uses sparse autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-discovered features include strikingly interpretable examples, e.g. circular features representing days of the week and months of the year. We identify tasks where these exact circles are used to solve computational problems involving modular arithmetic in days of the week and months of the year. Finally, we provide evidence that these circular features are indeed the fundamental unit of computation in these tasks with intervention experiments on Mistral 7B and Llama 3 8B, and we find further circular representations by breaking down the hidden states for these tasks into interpretable components.

In a context of a continuous digitalisation of processes, organisations must deal with the challenge of detecting anomalies that can reveal suspicious activities upon an increasing volume of data. To pursue this goal, audit engagements are carried out regularly, and internal auditors and purchase specialists are constantly looking for new methods to automate these processes. This work proposes a methodology to prioritise the investigation of the cases detected in two large purchase datasets from real data. The goal is to contribute to the effectiveness of the companies' control efforts and to increase the performance of carrying out such tasks. A comprehensive Exploratory Data Analysis is carried out before using unsupervised Machine Learning techniques addressed to detect anomalies. A univariate approach has been applied through the z-Score index and the DBSCAN algorithm, while a multivariate analysis is implemented with the k-Means and Isolation Forest algorithms, and the Silhouette index, resulting in each method having a transaction candidates' proposal to be reviewed. An ensemble prioritisation of the candidates is provided jointly with a proposal of explicability methods (LIME, Shapley, SHAP) to help the company specialists in their understanding.

Efficient computation of sensitivities is a promising approach for efficiently of designing and optimizing high voltage direct current cable joints. This paper presents the adjoint variable method for coupled nonlinear transient electrothermal problems as an efficient approach to compute sensitivities with respect to a large number of design parameters. The method is used to compute material sensitivities of a 320kV high voltage direct current cable joint specimen. The results are validated against sensitivities obtained via the direct sensitivity method.

Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司