亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The woylier package implements tour interpolation paths between frames using Givens rotations. This provides an alternative to the geodesic interpolation between planes currently available in the tourr package. Tours are used to visualise high-dimensional data and models, to detect clustering, anomalies and non-linear relationships. Frame-to-frame interpolation can be useful for projection pursuit guided tours when the index is not rotationally invariant. It also provides a way to specifically reach a given target frame. We demonstrate the method for exploring non-linear relationships between currency cross-rates.

相關內容

The increasing reliance on Computed Tomography Pulmonary Angiography (CTPA) for Pulmonary Embolism (PE) diagnosis presents challenges and a pressing need for improved diagnostic solutions. The primary objective of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of PE. With this aim, we propose a classifier-guided detection approach that effectively leverages the classifier's probabilistic inference to direct the detection predictions, marking a novel contribution in the domain of automated PE diagnosis. Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism. This approach emulates a human expert's attention by looking at both global appearances and local lesion regions before making a decision. The classifier demonstrates robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture. Moreover, AG-CNN outperforms the baseline DenseNet-121 model, achieving an 8.1% AUROC gain. While previous research has mostly focused on finding PE in the main arteries, our use of cutting-edge object detection models and ensembling techniques greatly improves the accuracy of detecting small embolisms in the peripheral arteries. Finally, our proposed classifier-guided detection approach further refines the detection metrics, contributing new state-of-the-art to the community: mAP$_{50}$, sensitivity, and F1-score of 0.846, 0.901, and 0.779, respectively, outperforming the former benchmark with a significant 3.7% improvement in mAP$_{50}$. Our research aims to elevate PE patient care by integrating AI solutions into clinical workflows, highlighting the potential of human-AI collaboration in medical diagnostics.

This review presents various image segmentation methods using complex networks. Image segmentation is one of the important steps in image analysis as it helps analyze and understand complex images. At first, it has been tried to classify complex networks based on how it being used in image segmentation. In computer vision and image processing applications, image segmentation is essential for analyzing complex images with irregular shapes, textures, or overlapping boundaries. Advanced algorithms make use of machine learning, clustering, edge detection, and region-growing techniques. Graph theory principles combined with community detection-based methods allow for more precise analysis and interpretation of complex images. Hybrid approaches combine multiple techniques for comprehensive, robust segmentation, improving results in computer vision and image processing tasks.

This work introduces UstanceBR, a multimodal corpus in the Brazilian Portuguese Twitter domain for target-based stance prediction. The corpus comprises 86.8 k labelled stances towards selected target topics, and extensive network information about the users who published these stances on social media. In this article we describe the corpus multimodal data, and a number of usage examples in both in-domain and zero-shot stance prediction based on text- and network-related information, which are intended to provide initial baseline results for future studies in the field.

Minimizing data storage poses a significant challenge in large-scale metagenomic projects. In this paper, we present a new method for improving the encoding of FASTQ files generated by metagenomic sequencing. This method incorporates metagenomic classification followed by a recursive filter for clustering reads by DNA sequence similarity to improve the overall reference-free compression. In the results, we show an overall improvement in the compression of several datasets. As hypothesized, we show a progressive compression gain for higher coverage depth and number of identified species. Additionally, we provide an implementation that is freely available at //github.com/cobilab/mizar and can be customized to work with other FASTQ compression tools.

In the last years, social media has gained an unprecedented amount of attention, playing a pivotal role in shaping the contemporary landscape of communication and connection. However, Coordinated Inhautentic Behaviour (CIB), defined as orchestrated efforts by entities to deceive or mislead users about their identity and intentions, has emerged as a tactic to exploit the online discourse. In this study, we quantify the efficacy of CIB tactics by defining a general framework for evaluating the influence of a subset of nodes in a directed tree. We design two algorithms that provide optimal and greedy post-hoc placement strategies that lead to maximising the configuration influence. We then consider cascades from information spreading on Twitter to compare the observed behaviour with our algorithms. The results show that, according to our model, coordinated accounts are quite inefficient in terms of their network influence, thus suggesting that they may play a less pivotal role than expected. Moreover, the causes of these poor results may be found in two separate aspects: a bad placement strategy and a scarcity of resources.

This article presents a priori error estimates of the miscible displacement of one incompressible fluid by another through a porous medium characterized by a coupled system of nonlinear elliptic and parabolic equations. The study utilizes the $H(\rm{div})$ conforming virtual element method (VEM) for the approximation of the velocity, while a non-conforming virtual element approach is employed for the concentration. The pressure is discretised using the standard piecewise discontinuous polynomial functions. These spatial discretization techniques are combined with a backward Euler difference scheme for time discretization. The article also includes numerical results that validate the theoretical estimates presented.

We consider wave scattering from a system of highly contrasting resonators with time-modulated material parameters. In this setting, the wave equation reduces to a system of coupled Helmholtz equations that models the scattering problem. We consider the one-dimensional setting. In order to understand the energy of the system, we prove a novel higher-order discrete, capacitance matrix approximation of the subwavelength resonant quasifrequencies. Further, we perform numerical experiments to support and illustrate our analytical results and show how periodically time-dependent material parameters affect the scattered wave field.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司