Gaussian process modeling is a standard tool for building emulators for computer experiments, which are usually used to study deterministic functions, for example, a solution to a given system of partial differential equations. This work investigates applying Gaussian process modeling to a deterministic function from prediction and uncertainty quantification perspectives, where the Gaussian process model is misspecified. Specifically, we consider the case where the underlying function is fixed and from a reproducing kernel Hilbert space generated by some kernel function, and the same kernel function is used in the Gaussian process modeling as the correlation function for prediction and uncertainty quantification. While upper bounds and the optimal convergence rate of prediction in the Gaussian process modeling have been extensively studied in the literature, a comprehensive exploration of convergence rates and theoretical study of uncertainty quantification is lacking. We prove that, if one uses maximum likelihood estimation to estimate the variance in Gaussian process modeling, under different choices of the regularization parameter value, the predictor is not optimal and/or the confidence interval is not reliable. In particular, lower bounds of the prediction error under different choices of the regularization parameter value are obtained. The results indicate that, if one directly applies Gaussian process modeling to a fixed function, the reliability of the confidence interval and the optimality of the predictor cannot be achieved at the same time.
Let $P$ be a linear differential operator over $\mathcal{D} \subset \mathbb{R}^d$ and $U = (U_x)_{x \in \mathcal{D}}$ a second order stochastic process. In the first part of this article, we prove a new simple necessary and sufficient condition for all the trajectories of $U$ to verify the partial differential equation (PDE) $T(U) = 0$. This condition is formulated in terms of the covariance kernel of $U$. The novelty of this result is that the equality $T(U) = 0$ is understood in the sense of distributions, which is a functional analysis framework particularly adapted to the study of PDEs. This theorem provides precious insights during the second part of this article, which is dedicated to performing "physically informed" machine learning on data that is solution to the homogeneous 3 dimensional free space wave equation. We perform Gaussian Process Regression (GPR) on this data, which is a kernel based machine learning technique. To do so, we model the solution of this PDE as a trajectory drawn from a well-chosen Gaussian process (GP). We obtain explicit formulas for the covariance kernel of the corresponding stochastic process; this kernel can then be used for GPR. We explore two particular cases : the radial symmetry and the point source. In the case of radial symmetry, we derive "fast to compute" GPR formulas; in the case of the point source, we show a direct link between GPR and the classical triangulation method for point source localization used e.g. in GPS systems. We also show that this use of GPR can be interpreted as a new answer to the ill-posed inverse problem of reconstructing initial conditions for the wave equation with finite dimensional data, and also provides a way of estimating physical parameters from this data as in [Raissi et al,2017]. We finish by showcasing this physically informed GPR on a number of practical examples.
The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.
The Jeffreys divergence is a renown symmetrization of the oriented Kullback-Leibler divergence broadly used in information sciences. Since the Jeffreys divergence between Gaussian mixture models is not available in closed-form, various techniques with pros and cons have been proposed in the literature to either estimate, approximate, or lower and upper bound this divergence. In this paper, we propose a simple yet fast heuristic to approximate the Jeffreys divergence between two univariate Gaussian mixtures with arbitrary number of components. Our heuristic relies on converting the mixtures into pairs of dually parameterized probability densities belonging to an exponential family. In particular, we consider the versatile polynomial exponential family densities, and design a divergence to measure in closed-form the goodness of fit between a Gaussian mixture and its polynomial exponential density approximation. This goodness-of-fit divergence is a generalization of the Hyv\"arinen divergence used to estimate models with computationally intractable normalizers. It allows us to perform model selection by choosing the orders of the polynomial exponential densities used to approximate the mixtures. We demonstrate experimentally that our heuristic to approximate the Jeffreys divergence improves by several orders of magnitude the computational time of stochastic Monte Carlo estimations while approximating reasonably well the Jeffreys divergence, specially when the mixtures have a very small number of modes. Besides, our mixture-to-exponential family conversion techniques may prove useful in other settings.
One of the main problem in prediction theory of stationary processes $X(t)$ is to describe the asymptotic behavior of the best linear mean squared prediction error in predicting $X(0)$ given $ X(t),$ $-n\le t\le-1$, as $n$ goes to infinity. This behavior depends on the regularity (deterministic or non-deterministic) of the process $X(t)$. In his seminal paper {\it 'Some purely deterministic processes' (J. of Math. and Mech.,} {\bf 6}(6), 801-810, 1957), for a specific spectral density that has a very high order contact with zero M. Rosenblatt showed that the prediction error behaves like a power as $n\to\f$. In the paper Babayan et al. {\it 'Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences' (J. Time Ser. Anal.} {\bf 42}, 622-652, 2021), Rosenblatt's result was extended to the class of spectral densities of the form $f=f_dg$, where $f_d$ is the spectral density of a deterministic process that has a very high order contact with zero, while $g$ is a function that can have polynomial type singularities. In this paper, we describe new extensions of the above quoted results in the case where the function $g$ can have {\it arbitrary power type singularities}. Examples illustrate the obtained results.
It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or chi-square-divergence. Some of these inequalities rely on a new concept of information matrices. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we combine the general strategy for lower bounds with a reduction technique. This allows us to link the original problem to the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.
Stochastic gradient descent (SGD) and its variants have established themselves as the go-to algorithms for large-scale machine learning problems with independent samples due to their generalization performance and intrinsic computational advantage. However, the fact that the stochastic gradient is a biased estimator of the full gradient with correlated samples has led to the lack of theoretical understanding of how SGD behaves under correlated settings and hindered its use in such cases. In this paper, we focus on hyperparameter estimation for the Gaussian process (GP) and take a step forward towards breaking the barrier by proving minibatch SGD converges to a critical point of the full log-likelihood loss function, and recovers model hyperparameters with rate $O(\frac{1}{K})$ for $K$ iterations, up to a statistical error term depending on the minibatch size. Our theoretical guarantees hold provided that the kernel functions exhibit exponential or polynomial eigendecay which is satisfied by a wide range of kernels commonly used in GPs. Numerical studies on both simulated and real datasets demonstrate that minibatch SGD has better generalization over state-of-the-art GP methods while reducing the computational burden and opening a new, previously unexplored, data size regime for GPs.
A word is called closed if it has a prefix which is also its suffix and there is no internal occurrences of this prefix in the word. In this paper we study words that are rich in closed factors, i.e., which contain the maximal possible number of distinct closed factors. As the main result, we show that for finite words the asymptotics of the maximal number of distinct closed factors in a word of length $n$ is $\frac{n^2}{6}$. For infinite words, we show there exist words such that each their factor of length $n$ contains a quadratic number of distinct closed factors, with uniformly bounded constant; we call such words infinite closed-rich. We provide several necessary and some sufficient conditions for a word to be infinite closed rich. For example, we show that all linearly recurrent words are closed-rich. We provide a characterization of rich words among Sturmian words. Certain examples we provide involve non-constructive methods.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
In this paper we study the frequentist convergence rate for the Latent Dirichlet Allocation (Blei et al., 2003) topic models. We show that the maximum likelihood estimator converges to one of the finitely many equivalent parameters in Wasserstein's distance metric at a rate of $n^{-1/4}$ without assuming separability or non-degeneracy of the underlying topics and/or the existence of more than three words per document, thus generalizing the previous works of Anandkumar et al. (2012, 2014) from an information-theoretical perspective. We also show that the $n^{-1/4}$ convergence rate is optimal in the worst case.