亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Identification of the family to which a malware specimen belongs is essential in understanding the behavior of the malware and developing mitigation strategies. Solutions proposed by prior work, however, are often not practicable due to the lack of realistic evaluation factors. These factors include learning under class imbalance, the ability to identify new malware, and the cost of production-quality labeled data. In practice, deployed models face prominent, rare, and new malware families. At the same time, obtaining a large quantity of up-to-date labeled malware for training a model can be expensive. In this paper, we address these problems and propose a novel hierarchical semi-supervised algorithm, which we call the HNMFk Classifier, that can be used in the early stages of the malware family labeling process. Our method is based on non-negative matrix factorization with automatic model selection, that is, with an estimation of the number of clusters. With HNMFk Classifier, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us to classify malware families under conditions of extreme class imbalance. Our solution can perform abstaining predictions, or rejection option, which yields promising results in the identification of novel malware families and helps with maintaining the performance of the model when a low quantity of labeled data is used. We perform bulk classification of nearly 2,900 both rare and prominent malware families, through static analysis, using nearly 388,000 samples from the EMBER-2018 corpus. In our experiments, we surpass both supervised and semi-supervised baseline models with an F1 score of 0.80.

相關內容

Goal-directed manipulation of representations is a key element of human flexible behaviour, while consciousness is often related to several aspects of higher-order cognition and human flexibility. Currently these two phenomena are only partially integrated (e.g., see Neurorepresentationalism) and this (a) limits our understanding of neuro-computational processes that lead conscious states to produce flexible goal-directed behaviours, (b) prevents a computational formalisation of conscious goal-directed manipulations of representations occurring in the brain, and (c) inhibits the exploitation of this knowledge for modelling and technological purposes. Addressing these issues, here we extend our `three-component theory of flexible cognition' by proposing the `Goal-Aligning Representations Internal Manipulation' (GARIM) theory of conscious and flexible goal-directed cognition. The central idea of the theory is that conscious states support the active manipulation of goal-relevant internal representations (e.g., of world states, objects, and action sequences) to make them more aligned with the pursued goals. This leads to the generation of the knowledge which is necessary to face novel situations/goals, thus increasing the flexibility of goal-directed behaviours. The GARIM theory integrates key aspects of the main theories of consciousness into the functional neuro-computational framework of goal-directed behaviour. Moreover, it takes into account the subjective sensation of agency that accompanies conscious goal-directed processes (`GARIM agency'). The proposal has also implications for experimental studies on consciousness and clinical aspects of conscious goal-directed behaviour. Finally, the GARIM theory benefit technological fields such as autonomous robotics and machine learning (e.g., the manipulation process may describe the operations performed by systems based on transformers).

Human action recognition from skeletal data is an important and active area of research in which the state of the art has not yet achieved near-perfect accuracy on many well-known datasets. In this paper, we introduce the Distribution of Action Movements Descriptor, a novel action descriptor based on the distribution of the directions of the motions of the joints between frames, over the set of all possible motions in the dataset. The descriptor is computed as a normalized histogram over a set of representative directions of the joints, which are in turn obtained via clustering. While the descriptor is global in the sense that it represents the overall distribution of movement directions of an action, it is able to partially retain its temporal structure by applying a windowing scheme. The descriptor, together with a standard classifier, outperforms several state-of-the-art techniques on many well-known datasets.

The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the complex interoperations and semantic diversity between JavaScript and WebAssembly. To bridge this gap, we present JWBinder, the first technique aimed at enhancing the static detection of JWMM. JWBinder performs a language-specific data-flow analysis to capture the cross-language interoperations and then characterizes the functionalities of JWMM through a unified high-level structure called Inter-language Program Dependency Graph. The extensive evaluation on one of the most representative real-world anti-virus platforms, VirusTotal, shows that \system effectively enhances anti-virus systems from various vendors and increases the overall successful detection rate against JWMM from 49.1\% to 86.2\%. Additionally, we assess the side effects and runtime overhead of JWBinder, corroborating its practical viability in real-world applications.

When perceiving the world from multiple viewpoints, humans have the ability to reason about the complete objects in a compositional manner even when an object is completely occluded from certain viewpoints. Meanwhile, humans are able to imagine novel views after observing multiple viewpoints. Recent remarkable advances in multi-view object-centric learning still leaves some unresolved problems: 1) The shapes of partially or completely occluded objects can not be well reconstructed. 2) The novel viewpoint prediction depends on expensive viewpoint annotations rather than implicit rules in view representations. In this paper, we introduce a time-conditioned generative model for videos. To reconstruct the complete shape of an object accurately, we enhance the disentanglement between the latent representations of objects and views, where the latent representations of time-conditioned views are jointly inferred with a Transformer and then are input to a sequential extension of Slot Attention to learn object-centric representations. In addition, Gaussian processes are employed as priors of view latent variables for video generation and novel-view prediction without viewpoint annotations. Experiments on multiple datasets demonstrate that the proposed model can make object-centric video decomposition, reconstruct the complete shapes of occluded objects, and make novel-view predictions.

We study the problem of determining the emergent behaviors that are possible given a functionally heterogeneous swarm of robots with limited capabilities. Prior work has considered behavior search for homogeneous swarms and proposed the use of novelty search over either a hand-specified or learned behavior space followed by clustering to return a taxonomy of emergent behaviors to the user. In this paper, we seek to better understand the role of novelty search and the efficacy of using clustering to discover novel emergent behaviors. Through a large set of experiments and ablations, we analyze the effect of representations, evolutionary search, and various clustering methods in the search for novel behaviors in a heterogeneous swarm. Our results indicate that prior methods fail to discover many interesting behaviors and that an iterative human-in-the-loop discovery process discovers more behaviors than random search, swarm chemistry, and automated behavior discovery. The combined discoveries of our experiments uncover 23 emergent behaviors, 18 of which are novel discoveries. To the best of our knowledge, these are the first known emergent behaviors for heterogeneous swarms of computation-free agents. Videos, code, and appendix are available at the project website: //sites.google.com/view/heterogeneous-bd-methods

Understanding the behavior of non-human primates is crucial for improving animal welfare, modeling social behavior, and gaining insights into distinctively human and phylogenetically shared behaviors. However, the lack of datasets on non-human primate behavior hinders in-depth exploration of primate social interactions, posing challenges to research on our closest living relatives. To address these limitations, we present ChimpACT, a comprehensive dataset for quantifying the longitudinal behavior and social relations of chimpanzees within a social group. Spanning from 2015 to 2018, ChimpACT features videos of a group of over 20 chimpanzees residing at the Leipzig Zoo, Germany, with a particular focus on documenting the developmental trajectory of one young male, Azibo. ChimpACT is both comprehensive and challenging, consisting of 163 videos with a cumulative 160,500 frames, each richly annotated with detection, identification, pose estimation, and fine-grained spatiotemporal behavior labels. We benchmark representative methods of three tracks on ChimpACT: (i) tracking and identification, (ii) pose estimation, and (iii) spatiotemporal action detection of the chimpanzees. Our experiments reveal that ChimpACT offers ample opportunities for both devising new methods and adapting existing ones to solve fundamental computer vision tasks applied to chimpanzee groups, such as detection, pose estimation, and behavior analysis, ultimately deepening our comprehension of communication and sociality in non-human primates.

Ising machines are a form of quantum-inspired processing-in-memory computer which has shown great promise for overcoming the limitations of traditional computing paradigms while operating at a fraction of the energy use. The process of designing Ising machines is known as the reverse Ising problem. Unfortunately, this problem is in general computationally intractable: it is a nonconvex mixed-integer linear programming problem which cannot be naively brute-forced except in the simplest cases due to exponential scaling of runtime with number of spins. We prove new theoretical results which allow us to reduce the search space to one with quadratic scaling. We utilize this theory to develop general purpose algorithmic solutions to the reverse Ising problem. In particular, we demonstrate Ising formulations of 3-bit and 4-bit integer multiplication which use fewer total spins than previously known methods by a factor of more than three. Our results increase the practicality of implementing such circuits on modern Ising hardware, where spins are at a premium.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

北京阿比特科技有限公司