亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The concept of extension-based proofs models the idea of a valency argument which is widely used in distributed computing. Extension-based proofs are limited in power: it has been shown that there is no extension-based proof of the impossibility of a wait-free protocol for $(n,k)$-set agreement among $n > k \geq 2$ processes. A discussion of a restricted type of reduction has shown that there are no extension-based proofs of the impossibility of wait-free protocols for some other distributed computing problems. We extend the previous result to general reductions that allow multiple instances of tasks. The techniques used in the previous work are designed for certain tasks, such as the $(n,k)$-set agreement task. We give a necessary and sufficient condition for general colorless tasks to have no extension-based proofs of the impossibility of wait-free protocols, and show that different types of extension-based proof are equivalent in power for colorless tasks. Using this necessary and sufficient condition, the result about reductions can be understood from a topological perspective.

相關內容

In the literature, finite mixture models are described as linear combinations of probability distribution functions having the form $\displaystyle f(x) = \Lambda \sum_{i=1}^n w_i f_i(x)$, $x \in \mathbb{R}$, where $w_i$ are positive weights, $\Lambda$ is a suitable normalising constant and $f_i(x)$ are given probability density functions. The fact that $f(x)$ is a probability density function follows naturally in this setting. Our question is: what happens when we remove the sign condition on the coefficients $w_i$? The answer is that it is possible to determine the sign pattern of the function $f(x)$ by an algorithm based on finite sequence that we call a generalized Budan-Fourier sequence. In this paper we provide theoretical motivation for the functioning of the algorithm, and we describe with various examples its strength and possible applications.

We consider the new extension of population protocols with unordered data and show that the corresponding well-specification problem and therefore also other verification problems are undecidable.

We present a method for extracting general modules for ontologies formulated in the description logic ALC. A module for an ontology is an ideally substantially smaller ontology that preserves all entailments for a user-specified set of terms. As such, it has applications such as ontology reuse and ontology analysis. Different from classical modules, general modules may use axioms not explicitly present in the input ontology, which allows for additional conciseness. So far, general modules have only been investigated for lightweight description logics. We present the first work that considers the more expressive description logic ALC. In particular, our contribution is a new method based on uniform interpolation supported by some new theoretical results. Our evaluation indicates that our general modules are often smaller than classical modules and uniform interpolants computed by the state-of-the-art, and compared with uniform interpolants, can be computed in a significantly shorter time. Moreover, our method can be used for, and in fact improves, the computation of uniform interpolants and classical modules.

Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of $k$-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However, the previous extensions are based on an unrealistic assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete as soon as a single member leaves it. In this work, we propose a new substructure model, called ($k$, $t$)-hypercore, based on the assumption that high-order relations remain as long as at least $t$ fraction of the members remain. Specifically, it is defined as the maximal subhypergraph where (1) every node is contained in at least $k$ hyperedges in it and (2) at least $t$ fraction of the nodes remain in every hyperedge. We first prove that, given $t$ (or $k$), finding the ($k$, $t$)-hypercore for every possible $k$ (or $t$) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we demonstrate that real-world hypergraphs from the same domain share similar ($k$, $t$)-hypercore structures, which capture different perspectives depending on $t$. Lastly, we show the successful applications of our model in identifying influential nodes, dense substructures, and vulnerability in hypergraphs.

Inspired by certain regularization techniques for linear inverse problems, in this work we investigate the convergence properties of the Levenberg-Marquardt method using singular scaling matrices. Under a completeness condition, we show that the method is well-defined and establish its local quadratic convergence under an error bound assumption. We also prove that the search directions are gradient-related allowing us to show that limit points of the sequence generated by a line-search version of the method are stationary for the sum-of-squares function. The usefulness of the method is illustrated with some examples of parameter identification in heat conduction problems for which specific singular scaling matrices can be used to improve the quality of approximate solutions.

The complexity of today's robot control systems implies difficulty in developing them efficiently and reliably. Systems engineering (SE) and frameworks come to help. The framework metamodels are needed to support the standardisation and correctness of the created application models. Although the use of frameworks is widespread nowadays, for the most popular of them, Robot Operating System (ROS), a contemporary metamodel has been missing so far. This article proposes a new metamodel for ROS called MeROS, which addresses the running system and developer workspace. The ROS comes in two versions: ROS 1 and ROS 2. The metamodel includes both versions. In particular, the latest ROS 1 concepts are considered, such as nodelet, action, and metapackage. An essential addition to the original ROS concepts is the grouping of these concepts, which provides an opportunity to illustrate the system's decomposition and varying degrees of detail in its presentation. The metamodel is derived from the requirements and verified on the practical example of Rico assistive robot. The matter is described in a standardised way in SysML (Systems Modeling Language). Hence, common development tools that support SysML can help conduct projects in the spirit of SE.

The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey we seek to unify the field of AutoRL, we provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司