亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

De Finetti's theorem, also called the de Finetti-Hewitt-Savage theorem, is a foundational result in probability and statistics. Roughly, it says that an infinite sequence of exchangeable random variables can always be written as a mixture of independent and identically distributed (i.i.d.) sequences of random variables. In this paper, we consider a weighted generalization of exchangeability that allows for weight functions to modify the individual distributions of the random variables along the sequence, provided that -- modulo these weight functions -- there is still some common exchangeable base measure. We study conditions under which a de Finetti-type representation exists for weighted exchangeable sequences, as a mixture of distributions which satisfy a weighted form of the i.i.d. property. Our approach establishes a nested family of conditions that lead to weighted extensions of other well-known related results as well, in particular, extensions of the zero-one law and the law of large numbers.

相關內容

Rational Identity Testing (RIT) is the decision problem of determining whether or not a noncommutative rational formula computes zero in the free skew field. It admits a deterministic polynomial-time white-box algorithm [Garg, Gurvits, Oliveira, and Wigderson (2016); Ivanyos, Qiao, Subrahmanyam (2018); Hamada and Hirai (2021)], and a randomized polynomial-time algorithm [Derksen and Makam (2017)] in the black-box setting, via singularity testing of linear matrices over the free skew field. Indeed, a randomized NC algorithm for RIT in the white-box setting follows from the result of Derksen and Makam (2017). Designing an efficient deterministic black-box algorithm for RIT and understanding the parallel complexity of RIT are major open problems in this area. Despite being open since the work of Garg, Gurvits, Oliveira, and Wigderson (2016), these questions have seen limited progress. In fact, the only known result in this direction is the construction of a quasipolynomial-size hitting set for rational formulas of only inversion height two [Arvind, Chatterjee, Mukhopadhyay (2022)]. In this paper, we significantly improve the black-box complexity of this problem and obtain the first quasipolynomial-size hitting set for all rational formulas of polynomial size. Our construction also yields the first deterministic quasi-NC upper bound for RIT in the white-box setting.

Uncertainty decomposition refers to the task of decomposing the total uncertainty of a model into data (aleatoric) uncertainty, resulting from the inherent complexity or ambiguity of the data, and model (epistemic) uncertainty, resulting from the lack of knowledge in the model. Performing uncertainty decomposition for large language models (LLMs) is an important step toward improving the reliability, trustworthiness, and interpretability of LLMs, but this research task is very challenging and remains unresolved. The existing canonical method, Bayesian Neural Network (BNN), cannot be applied to LLMs, because BNN requires training and ensembling multiple variants of models, which is infeasible or prohibitively expensive for LLMs. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarifications ensemble, which bypasses the need to train new models. Rather than ensembling models with different parameters, our approach generates a set of clarifications for the input, feeds them into the fixed LLMs, and ensembles the corresponding predictions. We show that our framework shares a symmetric decomposition structure with BNN. Empirical evaluations demonstrate that the proposed framework provides accurate and reliable uncertainty quantification on various tasks. Code will be made publicly available at //github.com/UCSB-NLP-Chang/llm_uncertainty .

As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers' perspective, one viable form of attack that can be implemented thereupon is the so-called "side-channel attack". Two best-known countermeasures heralded to be durable against side-channel attacks are: "masking" and "hiding". In that dichotomous picture, of particular note are successful single-trace attacks on some of the NIST's PQC then-candidates, which worked to the detriment of the former: "masking". In this paper, we cast an eye over the latter: "hiding". Hiding proves to be durable against both side-channel attacks and another equally robust type of attacks called "fault injection attacks", and hence is deemed an auspicious countermeasure to be implemented. Mathematically, the hiding method is fundamentally based on random permutations. There has been a cornucopia of studies on generating random permutations. However, those are not tied to implementation of the hiding method. In this paper, we propose a reliable and efficient verification of permutation implementation, through employing Fisher-Yates' shuffling method. We introduce the concept of an n-th order permutation and explain how it can be used to verify that our implementation is more efficient than its previous-gen counterparts for hiding countermeasures.

A mixture of multivariate Poisson-log normal factor analyzers is introduced by imposing constraints on the covariance matrix, which resulted in flexible models for clustering purposes. In particular, a class of eight parsimonious mixture models based on the mixtures of factor analyzers model are introduced. Variational Gaussian approximation is used for parameter estimation, and information criteria are used for model selection. The proposed models are explored in the context of clustering discrete data arising from RNA sequencing studies. Using real and simulated data, the models are shown to give favourable clustering performance. The GitHub R package for this work is available at //github.com/anjalisilva/mixMPLNFA and is released under the open-source MIT license.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司