亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-hop question generation (MQG) aims to generate complex questions which require reasoning over multiple pieces of information of the input passage. Most existing work on MQG has focused on exploring graph-based networks to equip the traditional Sequence-to-sequence framework with reasoning ability. However, these models do not take full advantage of the constraint between questions and answers. Furthermore, studies on multi-hop question answering (QA) suggest that Transformers can replace the graph structure for multi-hop reasoning. Therefore, in this work, we propose a novel framework, QA4QG, a QA-augmented BART-based framework for MQG. It augments the standard BART model with an additional multi-hop QA module to further constrain the generated question. Our results on the HotpotQA dataset show that QA4QG outperforms all state-of-the-art models, with an increase of 8 BLEU-4 and 8 ROUGE points compared to the best results previously reported. Our work suggests the advantage of introducing pre-trained language models and QA module for the MQG task.

相關內容

The problem of Question Answering (QA) has attracted significant research interest for long. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over the recent years. The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a sudden surge with high quality datasets, models and evaluation strategies. The notion of `multiple hops' is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This implies that different datasets and models differ significantly which makes the field challenging to generalize and survey. This work aims to provide a general and formal definition of MHQA task, and organize and summarize existing MHQA frameworks. We also outline the best methods to create MHQA datasets. The paper provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task.

Bridging the semantic gap between image and question is an important step to improve the accuracy of the Visual Question Answering (VQA) task. However, most of the existing VQA methods focus on attention mechanisms or visual relations for reasoning the answer, while the features at different semantic levels are not fully utilized. In this paper, we present a new reasoning framework to fill the gap between visual features and semantic clues in the VQA task. Our method first extracts the features and predicates from the image and question. We then propose a new reasoning framework to effectively jointly learn these features and predicates in a coarse-to-fine manner. The intensively experimental results on three large-scale VQA datasets show that our proposed approach achieves superior accuracy comparing with other state-of-the-art methods. Furthermore, our reasoning framework also provides an explainable way to understand the decision of the deep neural network when predicting the answer.

Multiple-choice VQA has drawn increasing attention from researchers and end-users recently. As the demand for automatically constructing large-scale multiple-choice VQA data grows, we introduce a novel task called textual Distractors Generation for VQA (DG-VQA) focusing on generating challenging yet meaningful distractors given the context image, question, and correct answer. The DG-VQA task aims at generating distractors without ground-truth training samples since such resources are rarely available. To tackle the DG-VQA unsupervisedly, we propose Gobbet, a reinforcement learning(RL) based framework that utilizes pre-trained VQA models as an alternative knowledge base to guide the distractor generation process. In Gobbet, a pre-trained VQA model serves as the environment in RL setting to provide feedback for the input multi-modal query, while a neural distractor generator serves as the agent to take actions accordingly. We propose to use existing VQA models' performance degradation as indicators of the quality of generated distractors. On the other hand, we show the utility of generated distractors through data augmentation experiments, since robustness is more and more important when AI models apply to unpredictable open-domain scenarios or security-sensitive applications. We further conduct a manual case study on the factors why distractors generated by Gobbet can fool existing models.

Dense video captioning aims to identify the events of interest in an input video, and generate descriptive captions for each event. Previous approaches usually follow a two-stage generative process, which first proposes a segment for each event, then renders a caption for each identified segment. Recent advances in large-scale sequence generation pretraining have seen great success in unifying task formulation for a great variety of tasks, but so far, more complex tasks such as dense video captioning are not able to fully utilize this powerful paradigm. In this work, we show how to model the two subtasks of dense video captioning jointly as one sequence generation task, and simultaneously predict the events and the corresponding descriptions. Experiments on YouCook2 and ViTT show encouraging results and indicate the feasibility of training complex tasks such as end-to-end dense video captioning integrated into large-scale pre-trained models.

This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations, including business emails, panel discussions, and work channels. Unlike open-domain and task-oriented dialogues, these conversations are usually long, complex, asynchronous, and involve strong domain knowledge. In total, we collect 34,608 QA pairs from 10,259 selected conversations with both human-written and machine-generated questions. We use a question generator and a dialogue summarizer as auxiliary tools to collect and recommend questions. The dataset has two testing scenarios: chunk mode and full mode, depending on whether the grounded partial conversation is provided or retrieved. Experimental results show that state-of-the-art pretrained QA systems have limited zero-shot performance and tend to predict our questions as unanswerable. Our dataset provides a new training and evaluation testbed to facilitate QA on conversations research.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司