亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In complex settings, such as healthcare, predictive risk scores play an increasingly crucial role in guiding interventions. However, directly updating risk scores used to guide intervention can lead to biased risk estimates. To address this, we propose updating using a `holdout set' - a subset of the population that does not receive interventions guided by the risk score. Striking a balance in the size of the holdout set is essential, to ensure good performance of the updated risk score whilst minimising the number of held out samples. We prove that this approach enables total costs to grow at a rate $O\left(N^{2/3}\right)$ for a population of size $N$, and argue that in general circumstances there is no competitive alternative. By defining an appropriate loss function, we describe conditions under which an optimal holdout size (OHS) can be readily identified, and introduce parametric and semi-parametric algorithms for OHS estimation, demonstrating their use on a recent risk score for pre-eclampsia. Based on these results, we make the case that a holdout set is a safe, viable and easily implemented means to safely update predictive risk scores.

相關內容

Point source localisation is generally modelled as a Lasso-type problem on measures. However, optimisation methods in non-Hilbert spaces, such as the space of Radon measures, are much less developed than in Hilbert spaces. Most numerical algorithms for point source localisation are based on the Frank-Wolfe conditional gradient method, for which ad hoc convergence theory is developed. We develop extensions of proximal-type methods to spaces of measures. This includes forward-backward splitting, its inertial version, and primal-dual proximal splitting. Their convergence proofs follow standard patterns. We demonstrate their numerical efficacy.

Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall.

The vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry. In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables, to evaluate the effectiveness of NISQ devices when applied to industry relevant optimization problems. We apply a quantum variational approach to a testbed of multiple VRPTW instances ranging from 11 to 3964 routes. These intances were formulated as quadratic unconstrained binary optimization (QUBO) problems based on realistic shipping scenarios. We compare our results with standard binary-to-qubit mappings after executing on simulators as well as various quantum hardware platforms, including IBMQ, AWS (Rigetti), and IonQ. These results are benchmarked against the classical solver, Gurobi. Our approach can find approximate solutions to the VRPTW comparable to those obtained from quantum algorithms using the full encoding, despite the reduction in qubits required. These results suggest that using the encoding scheme to fit larger problem sizes into fewer qubits is a promising step in using NISQ devices to find approximate solutions for industry-based optimization problems, although additional resources are still required to eke out the performance from larger problem sizes.

We consider the problem of predicting an individual's identity from accelerometry data collected during walking. In a previous paper we introduced an approach that transforms the accelerometry time series into an image by constructing its complete empirical autocorrelation distribution. Predictors derived by partitioning this image into grid cells were used in logistic regression to predict individuals. Here we: (1) implement machine learning methods for prediction using the grid cell-derived predictors; (2) derive inferential methods to screen for the most predictive grid cells; and (3) develop a novel multivariate functional regression model that avoids partitioning of the predictor space into cells. Prediction methods are compared on two open source data sets: (1) accelerometry data collected from $32$ individuals walking on a $1.06$ kilometer path; and (2) accelerometry data collected from six repetitions of walking on a $20$ meter path on two separate occasions at least one week apart for $153$ study participants. In the $32$-individual study, all methods achieve at least $95$% rank-1 accuracy, while in the $153$-individual study, accuracy varies from $41$% to $98$%, depending on the method and prediction task. Methods provide insights into why some individuals are easier to predict than others.

Loss reserving generally focuses on identifying a single model that can generate superior predictive performance. However, different loss reserving models specialise in capturing different aspects of loss data. This is recognised in practice in the sense that results from different models are often considered, and sometimes combined. For instance, actuaries may take a weighted average of the prediction outcomes from various loss reserving models, often based on subjective assessments. In this paper, we propose a systematic framework to objectively combine (i.e. ensemble) multiple _stochastic_ loss reserving models such that the strengths offered by different models can be utilised effectively. Our framework contains two main innovations compared to existing literature and practice. Firstly, our criteria model combination considers the full distributional properties of the ensemble and not just the central estimate - which is of particular importance in the reserving context. Secondly, our framework is that it is tailored for the features inherent to reserving data. These include, for instance, accident, development, calendar, and claim maturity effects. Crucially, the relative importance and scarcity of data across accident periods renders the problem distinct from the traditional ensembling techniques in statistical learning. Our framework is illustrated with a complex synthetic dataset. In the results, the optimised ensemble outperforms both (i) traditional model selection strategies, and (ii) an equally weighted ensemble. In particular, the improvement occurs not only with central estimates but also relevant quantiles, such as the 75th percentile of reserves (typically of interest to both insurers and regulators).

A reliable deepfake detector or spoofing countermeasure (CM) should be robust in the face of unpredictable spoofing attacks. To encourage the learning of more generaliseable artefacts, rather than those specific only to known attacks, CMs are usually exposed to a broad variety of different attacks during training. Even so, the performance of deep-learning-based CM solutions are known to vary, sometimes substantially, when they are retrained with different initialisations, hyper-parameters or training data partitions. We show in this paper that the potency of spoofing attacks, also deep-learning-based, can similarly vary according to training conditions, sometimes resulting in substantial degradations to detection performance. Nevertheless, while a RawNet2 CM model is vulnerable when only modest adjustments are made to the attack algorithm, those based upon graph attention networks and self-supervised learning are reassuringly robust. The focus upon training data generated with different attack algorithms might not be sufficient on its own to ensure generaliability; some form of spoofing attack augmentation at the algorithm level can be complementary.

Due to the extremely low latency, events have been recently exploited to supplement lost information for motion deblurring. Existing approaches largely rely on the perfect pixel-wise alignment between intensity images and events, which is not always fulfilled in the real world. To tackle this problem, we propose a novel coarse-to-fine framework, named NETwork of Event-based motion Deblurring with STereo event and intensity cameras (St-EDNet), to recover high-quality images directly from the misaligned inputs, consisting of a single blurry image and the concurrent event streams. Specifically, the coarse spatial alignment of the blurry image and the event streams is first implemented with a cross-modal stereo matching module without the need for ground-truth depths. Then, a dual-feature embedding architecture is proposed to gradually build the fine bidirectional association of the coarsely aligned data and reconstruct the sequence of the latent sharp images. Furthermore, we build a new dataset with STereo Event and Intensity Cameras (StEIC), containing real-world events, intensity images, and dense disparity maps. Experiments on real-world datasets demonstrate the superiority of the proposed network over state-of-the-art methods.

Automatically evaluate the correctness of programming assignments is rather straightforward using unit and integration tests. However, programming tasks can be solved in multiple ways, many of which, although correct, are inelegant. For instance, excessive branching, poor naming or repetitiveness make the code hard to understand and maintain. These subjective qualities of code are hard to automatically assess using current techniques. In this work we investigate the use of CodeBERT to automatically assign quality score to Java code. We experiment with different models and training paradigms. We explore the accuracy of the models on a novel dataset for code quality assessment. Finally, we assess the quality of the predictions using saliency maps. We find that code quality to some extent is predictable and that transformer based models using task adapted pre-training can solve the task more efficiently than other techniques.

In recent years, a certain type of problems have become of interest where one wants to query a trained classifier. Specifically, one wants to find the closest instance to a given input instance such that the classifier's predicted label is changed in a desired way. Examples of these ``inverse classification'' problems are counterfactual explanations, adversarial examples and model inversion. All of them are fundamentally optimization problems over the input instance vector involving a fixed classifier, and it is of interest to achieve a fast solution for interactive or real-time applications. We focus on solving this problem efficiently for two of the most widely used classifiers: logistic regression and softmax classifiers. Owing to special properties of these models, we show that the optimization can be solved in closed form for logistic regression, and iteratively but extremely fast for the softmax classifier. This allows us to solve either case exactly (to nearly machine precision) in a runtime of milliseconds to around a second even for very high-dimensional instances and many classes.

Pretrial risk assessment tools are used in jurisdictions across the country to assess the likelihood of "pretrial failure," the event where defendants either fail to appear for court or reoffend. Judicial officers, in turn, use these assessments to determine whether to release or detain defendants during trial. While algorithmic risk assessment tools were designed to predict pretrial failure with greater accuracy relative to judges, there is still concern that both risk assessment recommendations and pretrial decisions are biased against minority groups. In this paper, we develop methods to investigate the association between risk factors and pretrial failure, while simultaneously estimating misclassification rates of pretrial risk assessments and of judicial decisions as a function of defendant race. This approach adds to a growing literature that makes use of outcome misclassification methods to answer questions about fairness in pretrial decision-making. We give a detailed simulation study for our proposed methodology and apply these methods to data from the Virginia Department of Criminal Justice Services. We estimate that the VPRAI algorithm has near-perfect specificity, but its sensitivity differs by defendant race. Judicial decisions also display evidence of bias; we estimate wrongful detention rates of 39.7% and 51.4% among white and Black defendants, respectively.

北京阿比特科技有限公司