亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A reliable deepfake detector or spoofing countermeasure (CM) should be robust in the face of unpredictable spoofing attacks. To encourage the learning of more generaliseable artefacts, rather than those specific only to known attacks, CMs are usually exposed to a broad variety of different attacks during training. Even so, the performance of deep-learning-based CM solutions are known to vary, sometimes substantially, when they are retrained with different initialisations, hyper-parameters or training data partitions. We show in this paper that the potency of spoofing attacks, also deep-learning-based, can similarly vary according to training conditions, sometimes resulting in substantial degradations to detection performance. Nevertheless, while a RawNet2 CM model is vulnerable when only modest adjustments are made to the attack algorithm, those based upon graph attention networks and self-supervised learning are reassuringly robust. The focus upon training data generated with different attack algorithms might not be sufficient on its own to ensure generaliability; some form of spoofing attack augmentation at the algorithm level can be complementary.

相關內容

Current word embedding models despite their success, still suffer from their lack of grounding in the real world. In this line of research, Gunther et al. 2022 proposed a behavioral experiment to investigate the relationship between words and images. In their setup, participants were presented with a target noun and a pair of images, one chosen by their model and another chosen randomly. Participants were asked to select the image that best matched the target noun. In most cases, participants preferred the image selected by the model. Gunther et al., therefore, concluded the possibility of a direct link between words and embodied experience. We took their experiment as a point of departure and addressed the following questions. 1. Apart from utilizing visually embodied simulation of given images, what other strategies might subjects have used to solve this task? To what extent does this setup rely on visual information from images? Can it be solved using purely textual representations? 2. Do current visually grounded embeddings explain subjects' selection behavior better than textual embeddings? 3. Does visual grounding improve the semantic representations of both concrete and abstract words? To address these questions, we designed novel experiments by using pre-trained textual and visually grounded word embeddings. Our experiments reveal that subjects' selection behavior is explained to a large extent based on purely text-based embeddings and word-based similarities, suggesting a minor involvement of active embodied experiences. Visually grounded embeddings offered modest advantages over textual embeddings only in certain cases. These findings indicate that the experiment by Gunther et al. may not be well suited for tapping into the perceptual experience of participants, and therefore the extent to which it measures visually grounded knowledge is unclear.

Common policy gradient methods rely on the maximization of a sequence of surrogate functions. In recent years, many such surrogate functions have been proposed, most without strong theoretical guarantees, leading to algorithms such as TRPO, PPO or MPO. Rather than design yet another surrogate function, we instead propose a general framework (FMA-PG) based on functional mirror ascent that gives rise to an entire family of surrogate functions. We construct surrogate functions that enable policy improvement guarantees, a property not shared by most existing surrogate functions. Crucially, these guarantees hold regardless of the choice of policy parameterization. Moreover, a particular instantiation of FMA-PG recovers important implementation heuristics (e.g., using forward vs reverse KL divergence) resulting in a variant of TRPO with additional desirable properties. Via experiments on simple bandit problems, we evaluate the algorithms instantiated by FMA-PG. The proposed framework also suggests an improved variant of PPO, whose robustness and efficiency we empirically demonstrate on the MuJoCo suite.

We present a scalable combined localization infrastructure deployment and task planning algorithm for underwater assembly. Infrastructure is autonomously modified to suit the needs of manipulation tasks based on an uncertainty model on the infrastructure's positional accuracy. Our uncertainty model can be combined with the noise characteristics from multiple devices. For the task planning problem, we propose a layer-based clustering approach that completes the manipulation tasks one cluster at a time. We employ movable visual fiducial markers as infrastructure and an autonomous underwater vehicle (AUV) for manipulation tasks. The proposed task planning algorithm is computationally simple, and we implement it on AUV without any offline computation requirements. Combined hardware experiments and simulations over large datasets show that the proposed technique is scalable to large areas.

Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building.

Normalizing flow is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks. Existing works adopt special network architectures and regularization of flow trajectories. In this paper, we develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which unfolds the discrete-time dynamic of the Wasserstein gradient flow. The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks, avoiding sampling SDE trajectories and score matching or variational learning, thus reducing the memory load and difficulty in end-to-end training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the induced trajectory in probability space to improve the model accuracy further. Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance compared with existing flow and diffusion models at a significantly reduced computational and memory cost.

We introduce the notion of the Lie derivative in the context of dual quaternions that represent rigid motions and twists. First we define the wrench in terms of dual quaternions. Then we show how the Lie derivative helps understand how actuators affect an end effector in parallel robots, and make it explicit in the two cases case of Stewart Platforms, and cable-driven parallel robots. We also show how to use Lie derivatives with the Newton-Raphson Method to solve the forward kinematic problem for over constrained parallel actuators. Finally, we derive the equations of motion of the end effector in dual quaternion form, which include the effect of inertia from the actuators.

To check the accuracy of Bayesian computations, it is common to use rank-based simulation-based calibration (SBC). However, SBC has drawbacks: The test statistic is somewhat ad-hoc, interactions are difficult to examine, multiple testing is a challenge, and the resulting p-value is not a divergence metric. We propose to replace the marginal rank test with a flexible classification approach that learns test statistics from data. This measure typically has a higher statistical power than the SBC rank test and returns an interpretable divergence measure of miscalibration, computed from classification accuracy. This approach can be used with different data generating processes to address likelihood-free inference or traditional inference methods like Markov chain Monte Carlo or variational inference. We illustrate an automated implementation using neural networks and statistically-inspired features, and validate the method with numerical and real data experiments.

Restricted Boltzmann machines are energy models made of a visible and a hidden layer. We identify an effective energy function describing the zero-temperature landscape on the visible units and depending only on the tail behaviour of the hidden layer prior distribution. Studying the location of the local minima of such an energy function, we show that the ability of a restricted Boltzmann machine to reconstruct a random pattern depends indeed only on the tail of the hidden prior distribution. We find that hidden priors with strictly super-Gaussian tails give only a logarithmic loss in pattern retrieval, while an efficient retrieval is much harder with hidden units with strictly sub-Gaussian tails; if the hidden prior has Gaussian tails, the retrieval capability is determined by the number of hidden units (as in the Hopfield model).

Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.

Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.

北京阿比特科技有限公司