Current word embedding models despite their success, still suffer from their lack of grounding in the real world. In this line of research, Gunther et al. 2022 proposed a behavioral experiment to investigate the relationship between words and images. In their setup, participants were presented with a target noun and a pair of images, one chosen by their model and another chosen randomly. Participants were asked to select the image that best matched the target noun. In most cases, participants preferred the image selected by the model. Gunther et al., therefore, concluded the possibility of a direct link between words and embodied experience. We took their experiment as a point of departure and addressed the following questions. 1. Apart from utilizing visually embodied simulation of given images, what other strategies might subjects have used to solve this task? To what extent does this setup rely on visual information from images? Can it be solved using purely textual representations? 2. Do current visually grounded embeddings explain subjects' selection behavior better than textual embeddings? 3. Does visual grounding improve the semantic representations of both concrete and abstract words? To address these questions, we designed novel experiments by using pre-trained textual and visually grounded word embeddings. Our experiments reveal that subjects' selection behavior is explained to a large extent based on purely text-based embeddings and word-based similarities, suggesting a minor involvement of active embodied experiences. Visually grounded embeddings offered modest advantages over textual embeddings only in certain cases. These findings indicate that the experiment by Gunther et al. may not be well suited for tapping into the perceptual experience of participants, and therefore the extent to which it measures visually grounded knowledge is unclear.
There has been an emergence of various models for long-term time series forecasting. Recent studies have demonstrated that a single linear layer, using Channel Dependent (CD) or Channel Independent (CI) modeling, can even outperform a large number of sophisticated models. However, current research primarily considers CD and CI as two complementary yet mutually exclusive approaches, unable to harness these two extremes simultaneously. And it is also a challenging issue that both CD and CI are static strategies that cannot be determined to be optimal for a specific dataset without extensive experiments. In this paper, we reconsider whether the current CI strategy is the best solution for time series forecasting. First, we propose a simple yet effective strategy called CSC, which stands for $\mathbf{C}$hannel $\mathbf{S}$elf-$\mathbf{C}$lustering strategy, for linear models. Our Channel Self-Clustering (CSC) enhances CI strategy's performance improvements while reducing parameter size, for exmpale by over 10 times on electricity dataset, and significantly cutting training time. Second, we further propose Channel Rearrangement (CR), a method for deep models inspired by the self-clustering. CR attains competitive performance against baselines. Finally, we also discuss whether it is best to forecast the future values using the historical values of the same channel as inputs. We hope our findings and methods could inspire new solutions beyond CD/CI.
We present Prequal (Probing to Reduce Queuing and Latency), a load balancer for distributed multi-tenant systems. Prequal aims to minimize real-time request latency in the presence of heterogeneous server capacities and non-uniform, time-varying antagonist load. It actively probes server load to leverage the power-of-d-choices paradigm, extending it with asynchronous and reusable probes. Cutting against received wisdom, Prequal does not balance CPU load, but instead selects servers according to estimated latency and active requests-in-flight (RIF). We explore its major design features on a testbed system and evaluate it on YouTube, where it has been deployed for more than two years. Prequal has dramatically decreased tail latency, error rates, and resource use, enabling YouTube and other production systems at Google to run at much higher utilization.
In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.
We introduce an extension of first-order logic that comes equipped with additional predicates for reasoning about an abstract state. Sequents in the logic comprise a main formula together with pre- and postconditions in the style of Hoare logic, and the axioms and rules of the logic ensure that the assertions about the state compose in the correct way. The main result of the paper is a realizability interpretation of our logic that extracts programs into a mixed functional/imperative language. All programs expressible in this language act on the state in a sequential manner, and we make this intuition precise by interpreting them in a semantic metatheory using the state monad. Our basic framework is very general, and our intention is that it can be instantiated and extended in a variety of different ways. We outline in detail one such extension: A monadic version of Heyting arithmetic with a wellfounded while rule, and conclude by outlining several other directions for future work.
Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous context for improving trajectory prediction, state-of-the-art deep learning approaches still rely on a limited subset of this information. This is mainly due to the limited availability of comprehensive representations. This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes. Further, we present nuScenes Knowledge Graph (nSKG), a knowledge graph for the nuScenes dataset, that models explicitly all scene participants and road elements, as well as their semantic and spatial relationships. To facilitate the usage of the nSKG via graph neural networks for trajectory prediction, we provide the data in a format, ready-to-use by the PyG library. All artefacts can be found here: //github.com/boschresearch/nuScenes_Knowledge_Graph
This paper presents an approach for efficiently approximating the inverse of Fisher information, a key component in variational Bayes inference. A notable aspect of our approach is the avoidance of analytically computing the Fisher information matrix and its explicit inversion. Instead, we introduce an iterative procedure for generating a sequence of matrices that converge to the inverse of Fisher information. The natural gradient variational Bayes algorithm without matrix inversion is provably convergent and achieves a convergence rate of order O(log s/s), with s the number of iterations. We also obtain a central limit theorem for the iterates. Our algorithm exhibits versatility, making it applicable across a diverse array of variational Bayes domains, including Gaussian approximation and normalizing flow Variational Bayes. We offer a range of numerical examples to demonstrate the efficiency and reliability of the proposed variational Bayes method.
In speech recognition applications, it is important to recognize context-specific rare words, such as proper nouns. Tree-constrained Pointer Generator (TCPGen) has shown promise for this purpose, which efficiently biases such words with a prefix tree. While the original TCPGen relies on grapheme-based encoding, we propose extending it with phoneme-aware encoding to better recognize words of unusual pronunciations. As TCPGen handles biasing words as subword units, we propose obtaining subword-level phoneme-aware encoding by using alignment between phonemes and subwords. Furthermore, we propose injecting phoneme-level predictions from CTC into queries of TCPGen so that the model better interprets the phoneme-aware encodings. We conducted ASR experiments with TCPGen for RNN transducer. We observed that proposed phoneme-aware encoding outperformed ordinary grapheme-based encoding on both the English LibriSpeech and Japanese CSJ datasets, demonstrating the robustness of our approach across linguistically diverse languages.
The field of adversarial textual attack has significantly grown over the last few years, where the commonly considered objective is to craft adversarial examples (AEs) that can successfully fool the target model. However, the imperceptibility of attacks, which is also essential for practical attackers, is often left out by previous studies. In consequence, the crafted AEs tend to have obvious structural and semantic differences from the original human-written text, making them easily perceptible. In this work, we advocate leveraging multi-objectivization to address such issue. Specifically, we reformulate the problem of crafting AEs as a multi-objective optimization problem, where the attack imperceptibility is considered as an auxiliary objective. Then, we propose a simple yet effective evolutionary algorithm, dubbed HydraText, to solve this problem. To the best of our knowledge, HydraText is currently the only approach that can be effectively applied to both score-based and decision-based attack settings. Exhaustive experiments involving 44237 instances demonstrate that HydraText consistently achieves competitive attack success rates and better attack imperceptibility than the recently proposed attack approaches. A human evaluation study also shows that the AEs crafted by HydraText are more indistinguishable from human-written text. Finally, these AEs exhibit good transferability and can bring notable robustness improvement to the target model by adversarial training.
Maps are fundamental medium to visualize and represent the real word in a simple and 16 philosophical way. The emergence of the 3rd wave information has made a proportion of maps are available to be generated ubiquitously, which would significantly enrich the dimensions and perspectives to understand the characteristics of the real world. However, a majority of map dataset have never been discovered, acquired and effectively used, and the map data used in many applications might not be completely fitted for the authentic demands of these applications. This challenge is emerged due to the lack of numerous well-labelled benchmark datasets for implementing the deep learning approaches into identifying complicated map content. Thus, we develop a large-scale benchmark dataset that includes well-labelled dataset for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate the state-of-the-art machine intelligence technologies to conduct map feature detection, map pattern recognition and map content retrieval. We hope our efforts would be useful for AI-enhanced cartographical applications.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.