亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we analyze a non-clamped dynamic viscoelastic contact problem involving thermal effect. The friction law is described by a non-monotone relation between the tangential stress and the tangential velocity. This leads to a system of second-order inclusion for displacement and a parabolic equation for temperature. We provide a fully discrete approximation of the problem and find optimal error estimates without any smallness assumption on the data. The theoretical result is illustrated by numerical simulations.

相關內容

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

The growing availability and usage of low precision foating point formats has attracts many interests of developing lower or mixed precision algorithms for scientific computing problems. In this paper we investigate the possibility of exploiting lower precision computing in LSQR for solving discrete linear ill-posed problems. We analyze the choice of proper computing precisions in the two main parts of LSQR, including the construction of Lanczos vectors and updating procedure of iterative solutions. We show that, under some mild conditions, the Lanczos vectors can be computed using single precision without loss of any accuracy of final regularized solutions as long as the noise level is not extremely small. We also show that the most time consuming part for updating iterative solutions can be performed using single precision without sacrificing any accuracy. The results indicate that the most time consuming parts of the algorithm can be implemented using single precision, and thus the performance of LSQR for solving discrete linear ill-posed problems can be significantly enhanced. Numerical experiments are made for testing the single precision variants of LSQR and confirming our results.

We ask whether there exists a function or measure that (1) minimizes a given convex functional or risk and (2) satisfies a symmetry property specified by an amenable group of transformations. Examples of such symmetry properties are invariance, equivariance, or quasi-invariance. Our results draw on old ideas of Stein and Le Cam and on approximate group averages that appear in ergodic theorems for amenable groups. A class of convex sets known as orbitopes in convex analysis emerges as crucial, and we establish properties of such orbitopes in nonparametric settings. We also show how a simple device called a cocycle can be used to reduce different forms of symmetry to a single problem. As applications, we obtain results on invariant kernel mean embeddings and a Monge-Kantorovich theorem on optimality of transport plans under symmetry constraints. We also explain connections to the Hunt-Stein theorem on invariant tests.

We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy of increasingly finer meshes. For the discretized, algebraic eigenproblems we use both the Rayleigh quotient (RQ) iteration and implicitly restarted Arnoldi (IRA), providing an analysis of the cost in each case. By studying the variance on each level and adapting classical FE error bounds to the stochastic setting, we are able to bound the total error of our MLMC estimator and provide a complexity analysis. As expected, the complexity bound for our MLMC estimator is superior to plain Monte Carlo. To improve the efficiency of the MLMC further, we exploit the hierarchy of meshes and use coarser approximations as starting values for the eigensolvers on finer ones. To improve the stability of the MLMC method for convection-dominated problems, we employ two additional strategies. First, we consider the streamline upwind Petrov--Galerkin formulation of the discrete eigenvalue problem, which allows us to start the MLMC method on coarser meshes than is possible with standard FEs. Second, we apply a homotopy method to add stability to the eigensolver for each sample. Finally, we present a multilevel quasi-Monte Carlo method that replaces Monte Carlo with a quasi-Monte Carlo (QMC) rule on each level. Due to the faster convergence of QMC, this improves the overall complexity. We provide detailed numerical results comparing our different strategies to demonstrate the practical feasibility of the MLMC method in different use cases. The results support our complexity analysis and further demonstrate the superiority over plain Monte Carlo in all cases.

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

Robust grasping is a major, and still unsolved, problem in robotics. Information about the 3D shape of an object can be obtained either from prior knowledge (e.g., accurate models of known objects or approximate models of familiar objects) or real-time sensing (e.g., partial point clouds of unknown objects) and can be used to identify good potential grasps. However, due to modeling and sensing inaccuracies, local exploration is often needed to refine such grasps and successfully apply them in the real world. The recently proposed unscented Bayesian optimization technique can make such exploration safer by selecting grasps that are robust to uncertainty in the input space (e.g., inaccuracies in the grasp execution). Extending our previous work on 2D optimization, in this paper we propose a 3D haptic exploration strategy that combines unscented Bayesian optimization with a novel collision penalty heuristic to find safe grasps in a very efficient way: while by augmenting the search-space to 3D we are able to find better grasps, the collision penalty heuristic allows us to do so without increasing the number of exploration steps.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

In a recent study, Kumar and Lopez-Pamies (J. Mech. Phys. Solids 150: 104359, 2021) have provided a complete quantitative explanation of the famed poker-chip experiments of Gent and Lindley (Proc. R. Soc. Lond. Ser. A 249: 195--205, 1959) on natural rubber. In a nutshell, making use of the fracture theory of Kumar, Francfort, and Lopez-Pamies (J. Mech. Phys. Solids 112: 523--551, 2018), they have shown that the nucleation of cracks in poker-chip experiments in natural rubber is governed by the strength -- in particular, the hydrostatic strength -- of the rubber, while the propagation of the nucleated cracks is governed by the Griffith competition between the bulk elastic energy of the rubber and its intrinsic fracture energy. The main objective of this paper is to extend the theoretical study of the poker-chip experiment by Kumar and Lopez-Pamies to synthetic elastomers that, as opposed to natural rubber: ($i$) may feature a hydrostatic strength that is larger than their uniaxial and biaxial tensile strengths and ($ii$) do not exhibit strain-induced crystallization. A parametric study, together with direct comparisons with recent poker-chip experiments on a silicone elastomer, show that these two different material characteristics have a profound impact on where and when cracks nucleate, as well as on where and when they propagate. In conjunction with the results put forth earlier for natural rubber, the results presented in this paper provide a complete description and explanation of the poker-chip experiments of elastomers at large. As a second objective, this paper also introduces a new fully explicit constitutive prescription for the driving force that describes the material strength in the fracture theory of Kumar, Francfort, and Lopez-Pamies.

In this paper we formally define the hierarchical clustering network problem (HCNP) as the problem to find a good hierarchical partition of a network. This new problem focuses on the dynamic process of the clustering rather than on the final picture of the clustering process. To address it, we introduce a new ierarchical clustering algorithm in networks, based on a new shortest path betweenness measure. To calculate it, the communication between each pair of nodes is weighed by he importance of the nodes that establish this communication. The weights or importance associated to each pair of nodes are calculated as the Shapley value of a game, named as the linear modularity game. This new measure, (the node-game shortest path betweenness measure), is used to obtain a hierarchical partition of the network by eliminating the link with the highest value. To evaluate the performance of our algorithm, we introduce several criteria that allow us to compare different dendrograms of a network from two point of view: modularity and homogeneity. Finally, we propose a faster algorithm based on a simplification of the node-game shortest path betweenness measure, whose order is quadratic on sparse networks. This fast version is competitive from a computational point of view with other hierarchical fast algorithms, and, in general, it provides better results.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司