Linear error-correcting codes can be used for constructing secret sharing schemes; however finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values; these varieties give rise to $q$-divisible linear codes with at most $5$ weights. Furthermore, for $q$ odd these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, the secret sharing schemes thus obtained are democratic, that is each participant belongs to the same number of minimal access sets and can easily be described.
Decoding algorithms for Reed--Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch--Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For $(n,k)$ RS codes, where $n$ is the code length and $k$ is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity $O(n\log(n-k) + (n-k)\log^2(n-k))$ and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the $(4096, 3584)$ RS code defined over $\mathbb{F}_{2^{12}}$, the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation.
Free/Open Source Software (FOSS) enables large-scale reuse of preexisting software components. The main drawback is increased complexity in software supply chain management. A common approach to tame such complexity is automated open source compliance, which consists in automating the verication of adherence to various open source management best practices about license obligation fulllment, vulnerability tracking, software composition analysis, and nearby concerns.We consider the problem of auditing a source code base to determine which of its parts have been published before, which is an important building block of automated open source compliance toolchains. Indeed, if source code allegedly developed in house is recognized as having been previously published elsewhere, alerts should be raised to investigate where it comes from and whether this entails that additional obligations shall be fullled before product shipment.We propose an ecient approach for prior publication identication that relies on a knowledge base of known source code artifacts linked together in a global Merkle direct acyclic graph and a dedicated discovery protocol. We introduce swh-scanner, a source code scanner that realizes the proposed approach in practice using as knowledge base Software Heritage, the largest public archive of source code artifacts. We validate experimentally the proposed approach, showing its eciency in both abstract (number of queries) and concrete terms (wall-clock time), performing benchmarks on 16 845 real-world public code bases of various sizes, from small to very large.
The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-off between the girth - the number of hyperedges in the smallest cycle or even cover (a subhypergraph with all degrees even) and size - the number of hyperedges in a hypergraph. For graphs (i.e., $2$-uniform hypergraphs), a bound tight up to the leading constant was proven in a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity $k>2$, an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled up to an additional $\log^{4k+1} n$ factor in the size in a recent work of Guruswami, Kothari and Manohar [GKM21]. Their argument relies on a connection between the existence of short even covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially for the case of odd $k$, is significantly complicated. In this work, we present a substantially simpler and shorter proof of the hypergraph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that allows us to drop several involved steps in [GKM21]'s analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy-Sviridenko polynomial concentration. Our simpler proof also obtains tighter parameters: in particular, the argument gives a new proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a $\log^3 n$ factor), and loses only a single logarithmic factor for all $k>2$-uniform hypergraphs. As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off for strongly refuting smoothed instances of constraint satisfaction problems with similarly improved parameters.
In this paper, we investigate the relation between Bachelier and Black-Scholes models driven by the infinitely divisible inverse subordinators. Such models, in contrast to their classical equivalents, can be used in markets where periods of stagnation are observed. We introduce the subordinated Cox-Ross-Rubinstein model and prove that the price of the underlying in that model converges in distribution and in Skorokhod space to the price of underlying in the subordinated Black-Scholes model defined in [31]. Motivated by this fact we price the selected option contracts using the binomial trees. The results are compared to other numerical methods.
Differentiable renderers provide a direct mathematical link between an object's 3D representation and images of that object. In this work, we develop an approximate differentiable renderer for a compact, interpretable representation, which we call Fuzzy Metaballs. Our approximate renderer focuses on rendering shapes via depth maps and silhouettes. It sacrifices fidelity for utility, producing fast runtimes and high-quality gradient information that can be used to solve vision tasks. Compared to mesh-based differentiable renderers, our method has forward passes that are 5x faster and backwards passes that are 30x faster. The depth maps and silhouette images generated by our method are smooth and defined everywhere. In our evaluation of differentiable renderers for pose estimation, we show that our method is the only one comparable to classic techniques. In shape from silhouette, our method performs well using only gradient descent and a per-pixel loss, without any surrogate losses or regularization. These reconstructions work well even on natural video sequences with segmentation artifacts. Project page: //leonidk.github.io/fuzzy-metaballs
Despite recent advances in semantic manipulation using StyleGAN, semantic editing of real faces remains challenging. The gap between the $W$ space and the $W$+ space demands an undesirable trade-off between reconstruction quality and editing quality. To solve this problem, we propose to expand the latent space by replacing fully-connected layers in the StyleGAN's mapping network with attention-based transformers. This simple and effective technique integrates the aforementioned two spaces and transforms them into one new latent space called $W$++. Our modified StyleGAN maintains the state-of-the-art generation quality of the original StyleGAN with moderately better diversity. But more importantly, the proposed $W$++ space achieves superior performance in both reconstruction quality and editing quality. Despite these significant advantages, our $W$++ space supports existing inversion algorithms and editing methods with only negligible modifications thanks to its structural similarity with the $W/W$+ space. Extensive experiments on the FFHQ dataset prove that our proposed $W$++ space is evidently more preferable than the previous $W/W$+ space for real face editing. The code is publicly available for research purposes at //github.com/AnonSubm2021/TransStyleGAN.
Surface reconstruction from a set of scattered points, or a point cloud, has many applications ranging from computer graphics to remote sensing. We present a new method for this task that produces an implicit surface (zero-level set) approximation for an oriented point cloud using only information about (approximate) normals to the surface. The technique exploits the fundamental result from vector calculus that the normals to an implicit surface are curl-free. By using a curl-free radial basis function (RBF) interpolation of the normals, we can extract a potential for the vector field whose zero-level surface approximates the point cloud. We use curl-free RBFs based on polyharmonic splines for this task, since they are free of any shape or support parameters. Furthermore, to make this technique efficient and able to better represent local sharp features, we combine it with a partition of unity (PU) method. The result is the curl-free partition of unity (CFPU) method. We show how CFPU can be adapted to enforce exact interpolation of a point cloud and can be regularized to handle noise in both the normal vectors and the point positions. Numerical results are presented that demonstrate how the method converges for a known surface as the sampling density increases, how regularization handles noisy data, and how the method performs on various problems found in the literature.
This paper studies \emph{linear} and \emph{affine} error-correcting codes for correcting synchronization errors such as insertions and deletions. We call such codes linear/affine insdel codes. Linear codes that can correct even a single deletion are limited to have information rate at most $1/2$ (achieved by the trivial 2-fold repetition code). Previously, it was (erroneously) reported that more generally no non-trivial linear codes correcting $k$ deletions exist, i.e., that the $(k+1)$-fold repetition codes and its rate of $1/(k+1)$ are basically optimal for any $k$. We disprove this and show the existence of binary linear codes of length $n$ and rate just below $1/2$ capable of correcting $\Omega(n)$ insertions and deletions. This identifies rate $1/2$ as a sharp threshold for recovery from deletions for linear codes, and reopens the quest for a better understanding of the capabilities of linear codes for correcting insertions/deletions. We prove novel outer bounds and existential inner bounds for the rate vs. (edit) distance trade-off of linear insdel codes. We complement our existential results with an efficient synchronization-string-based transformation that converts any asymptotically-good linear code for Hamming errors into an asymptotically-good linear code for insdel errors. Lastly, we show that the $\frac{1}{2}$-rate limitation does not hold for affine codes by giving an explicit affine code of rate $1-\epsilon$ which can efficiently correct a constant fraction of insdel errors.
Adversarial attacks provide a good way to study the robustness of deep learning models. One category of methods in transfer-based black-box attack utilizes several image transformation operations to improve the transferability of adversarial examples, which is effective, but fails to take the specific characteristic of the input image into consideration. In this work, we propose a novel architecture, called Adaptive Image Transformation Learner (AITL), which incorporates different image transformation operations into a unified framework to further improve the transferability of adversarial examples. Unlike the fixed combinational transformations used in existing works, our elaborately designed transformation learner adaptively selects the most effective combination of image transformations specific to the input image. Extensive experiments on ImageNet demonstrate that our method significantly improves the attack success rates on both normally trained models and defense models under various settings.
Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.