Policymakers often choose a policy bundle that is a combination of different interventions in different dosages. We develop a new technique -- treatment variant aggregation (TVA) -- to select a policy from a large factorial design. TVA pools together policy variants that are not meaningfully different and prunes those deemed ineffective. This allows us to restrict attention to aggregated policy variants, consistently estimate their effects on the outcome, and estimate the best policy effect adjusting for the winner's curse. We apply TVA to a large randomized controlled trial that tests interventions to stimulate demand for immunization in Haryana, India. The policies under consideration include reminders, incentives, and local ambassadors for community mobilization. Cross-randomizing these interventions, with different dosages or types of each intervention, yields 75 combinations. The policy with the largest impact (which combines incentives, ambassadors who are information hubs, and reminders) increases the number of immunizations by 44% relative to the status quo. The most cost-effective policy (information hubs, ambassadors, and SMS reminders but no incentives) increases the number of immunizations per dollar by 9.1% relative to status quo.
Mixed-effect models are flexible tools for researchers in a myriad of medical fields, but that flexibility comes at the cost of complexity and if users are not careful in how their model is specified, they could be making faulty inferences from their data. We argue that there is significant confusion around appropriate random effects to be included in a model given the study design, with researchers generally being better at specifying the fixed effects of a model which map onto to their research hypotheses. To that end, we present an instructive framework for evaluating the random effects of a model in three different situations: (1) longitudinal designs; (2) factorial repeated measures; and (3) when dealing with multiple sources of variance. We provide worked examples with open-access code and data in an online repository. This framework will be helpful for students and researchers who are new to mixed effect models, and to reviewers who may have to evaluate a novel model as part of their review.
Meta-learning aims to extract useful inductive biases from a set of related datasets. In Bayesian meta-learning, this is typically achieved by constructing a prior distribution over neural network parameters. However, specifying families of computationally viable prior distributions over the high-dimensional neural network parameters is difficult. As a result, existing approaches resort to meta-learning restrictive diagonal Gaussian priors, severely limiting their expressiveness and performance. To circumvent these issues, we approach meta-learning through the lens of functional Bayesian neural network inference, which views the prior as a stochastic process and performs inference in the function space. Specifically, we view the meta-training tasks as samples from the data-generating process and formalize meta-learning as empirically estimating the law of this stochastic process. Our approach can seamlessly acquire and represent complex prior knowledge by meta-learning the score function of the data-generating process marginals instead of parameter space priors. In a comprehensive benchmark, we demonstrate that our method achieves state-of-the-art performance in terms of predictive accuracy and substantial improvements in the quality of uncertainty estimates.
In the era of billion-parameter-sized Language Models (LMs), start-ups have to follow trends and adapt their technology accordingly. Nonetheless, there are open challenges since the development and deployment of large models comes with a need for high computational resources and has economical consequences. In this work, we follow the steps of the R&D group of a modern legal-tech start-up and present important insights on model development and deployment. We start from ground zero by pre-training multiple domain-specific multi-lingual LMs which are a better fit to contractual and regulatory text compared to the available alternatives (XLM-R). We present benchmark results of such models in a half-public half-private legal benchmark comprising 5 downstream tasks showing the impact of larger model size. Lastly, we examine the impact of a full-scale pipeline for model compression which includes: a) Parameter Pruning, b) Knowledge Distillation, and c) Quantization: The resulting models are much more efficient without sacrificing performance at large.
Modern recommender systems are trained to predict users potential future interactions from users historical behavior data. During the interaction process, despite the data coming from the user side recommender systems also generate exposure data to provide users with personalized recommendation slates. Compared with the sparse user behavior data, the system exposure data is much larger in volume since only very few exposed items would be clicked by the user. Besides, the users historical behavior data is privacy sensitive and is commonly protected with careful access authorization. However, the large volume of recommender exposure data usually receives less attention and could be accessed within a relatively larger scope of various information seekers. In this paper, we investigate the problem of user behavior leakage in recommender systems. We show that the privacy sensitive user past behavior data can be inferred through the modeling of system exposure. Besides, one can infer which items the user have clicked just from the observation of current system exposure for this user. Given the fact that system exposure data could be widely accessed from a relatively larger scope, we believe that the user past behavior privacy has a high risk of leakage in recommender systems. More precisely, we conduct an attack model whose input is the current recommended item slate (i.e., system exposure) for the user while the output is the user's historical behavior. Experimental results on two real-world datasets indicate a great danger of user behavior leakage. To address the risk, we propose a two-stage privacy-protection mechanism which firstly selects a subset of items from the exposure slate and then replaces the selected items with uniform or popularity-based exposure. Experimental evaluation reveals a trade-off effect between the recommendation accuracy and the privacy disclosure risk.
A robot finds it really hard to learn creatively and adapt to new unseen challenges. This is mainly because of the minimal information it has access to or experience towards. Paulius et al. [1] presented a way to construct functional graphs that encapsulate. Sakib et al. [2] further expanded FOON objects for robotic cooking. This paper presents a comparative study of Breadth First Search (BFS), Greedy Breadth First search (GBFS) with two heuristic functions, and Iterative Depth First Search (IDFS) and provides a comparison of their performance.
We propose the Terminating-Random Experiments (T-Rex) selector, a fast variable selection method for high-dimensional data. The T-Rex selector controls a user-defined target false discovery rate (FDR) while maximizing the number of selected variables. This is achieved by fusing the solutions of multiple early terminated random experiments. The experiments are conducted on a combination of the original predictors and multiple sets of randomly generated dummy predictors. A finite sample proof based on martingale theory for the FDR control property is provided. Numerical simulations confirm that the FDR is controlled at the target level while allowing for a high power. We prove under mild conditions that the dummies can be sampled from any univariate probability distribution with finite expectation and variance. The computational complexity of the proposed method is linear in the number of variables. The T-Rex selector outperforms state-of-the-art methods for FDR control on a simulated genome-wide association study (GWAS), while its sequential computation time is more than two orders of magnitude lower than that of the strongest benchmark methods. The open source R package TRexSelector containing the implementation of the T-Rex selector is available on CRAN.
An agile organization adapts what they are building to match their customer's evolving needs. Agile teams also adapt to changes in their organization's work environment. The latest change is the evolving environment of "hybrid" work - a mix of in-person and virtual staff. Team members might sometimes work together in the office, work from home, or work in other locations, and they may struggle to sustain a high level of collaboration and innovation. It isn't just pandemic social distancing - many of us want to work from home to eliminate our commute and spend more time with family. Are there learnings and best practices that organizations can use to become and stay effective in a hybrid world? An XP 2022 panel organized by Steven Fraser (Innoxec) discussed these questions in June 2022. The panel was facilitated by Hendrik Esser (Ericsson) and featured Alistair Cockburn (Heart of Agile), Sandy Mamoli (Nomad8), Nils Brede Moe (SINTEF), Jaana Nyfjord (Spotify), and Darja Smite (Blekinge Institute of Technology).
Wireless sensor networks are among the most promising technologies of the current era because of their small size, lower cost, and ease of deployment. With the increasing number of wireless sensors, the probability of generating missing data also rises. This incomplete data could lead to disastrous consequences if used for decision-making. There is rich literature dealing with this problem. However, most approaches show performance degradation when a sizable amount of data is lost. Inspired by the emerging field of graph signal processing, this paper performs a new study of a Sobolev reconstruction algorithm in wireless sensor networks. Experimental comparisons on several publicly available datasets demonstrate that the algorithm surpasses multiple state-of-the-art techniques by a maximum margin of 54%. We further show that this algorithm consistently retrieves the missing data even during massive data loss situations.
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.