亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a tensor type of discretization and optimization process for solving high dimensional partial differential equations. First, we design the tensor type of trial function for the high dimensional partial differential equations. Based on the tensor structure of the trial functions, we can do the direct numerical integration of the approximate solution without the help of Monte-Carlo method. Then combined with the Ritz or Galerkin method, solving the high dimensional partial differential equation can be transformed to solve a concerned optimization problem. Some numerical tests are provided to validate the proposed numerical methods.

相關內容

We develop a novel computational framework to approximate solution operators of evolution partial differential equations (PDEs). By employing a general nonlinear reduced-order model, such as a deep neural network, to approximate the solution of a given PDE, we realize that the evolution of the model parameter is a control problem in the parameter space. Based on this observation, we propose to approximate the solution operator of the PDE by learning the control vector field in the parameter space. From any initial value, this control field can steer the parameter to generate a trajectory such that the corresponding reduced-order model solves the PDE. This allows for substantially reduced computational cost to solve the evolution PDE with arbitrary initial conditions. We also develop comprehensive error analysis for the proposed method when solving a large class of semilinear parabolic PDEs. Numerical experiments on different high-dimensional evolution PDEs with various initial conditions demonstrate the promising results of the proposed method.

Parametric mathematical models such as partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the $L^2$ dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.

Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are still significant limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, machine learning-based methods such as neural networks are faster once trained, but tend to be restricted to a specific discretization. This article aims to provide a comprehensive summary of conventional methods and recent machine learning-based methods to approximate PDEs numerically. Furthermore, we highlight several key architectures centered around the neural operator, a novel and fast approach (1000x) to learning the solution operator of a PDE. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.

Solving high-dimensional partial differential equations is a recurrent challenge in economics, science and engineering. In recent years, a great number of computational approaches have been developed, most of them relying on a combination of Monte Carlo sampling and deep learning based approximation. For elliptic and parabolic problems, existing methods can broadly be classified into those resting on reformulations in terms of $\textit{backward stochastic differential equations}$ (BSDEs) and those aiming to minimize a regression-type $L^2$-error ($\textit{physics-informed neural networks}$, PINNs). In this paper, we review the literature and suggest a methodology based on the novel $\textit{diffusion loss}$ that interpolates between BSDEs and PINNs. Our contribution opens the door towards a unified understanding of numerical approaches for high-dimensional PDEs, as well as for implementations that combine the strengths of BSDEs and PINNs. The diffusion loss furthermore bears close similarities to $\textit{(least squares) temporal difference}$ objectives found in reinforcement learning. We also discuss eigenvalue problems and perform extensive numerical studies, including calculations of the ground state for nonlinear Schr\"odinger operators and committor functions relevant in molecular dynamics.

Vandermonde matrices are usually exponentially ill-conditioned and often result in unstable approximations. In this paper, we introduce and analyze the \textit{multivariate Vandermonde with Arnoldi (V+A) method}, which is based on least-squares approximation together with a Stieltjes orthogonalization process, for approximating continuous, multivariate functions on $d$-dimensional irregular domains. The V+A method addresses the ill-conditioning of the Vandermonde approximation by creating a set of discrete orthogonal basis with respect to a discrete measure. The V+A method is simple and general. It relies only on the sample points from the domain and requires no prior knowledge of the domain. In this paper, we first analyze the sample complexity of the V+A approximation. In particular, we show that, for a large class of domains, the V+A method gives a well-conditioned and near-optimal $N$-dimensional least-squares approximation using $M=\mathcal{O}(N^2)$ equispaced sample points or $M=\mathcal{O}(N^2\log N)$ random sample points, independently of $d$. We also give a comprehensive analysis of the error estimates and rate of convergence of the V+A approximation. Based on the multivariate V+A approximation, we propose a new variant of the weighted V+A least-squares algorithm that uses only $M=\mathcal{O}(N\log N)$ sample points to give a near-optimal approximation. Our numerical results confirm that the (weighted) V+A method gives a more accurate approximation than the standard orthogonalization method for high-degree approximation using the Vandermonde matrix.

We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called Phi-FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H1 norm for the velocity and L2 for pressure; numerically also in the L2 norm for the velocity).

Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.

Transfer learning for partial differential equations (PDEs) is to develop a pre-trained neural network that can be used to solve a wide class of PDEs. Existing transfer learning approaches require much information of the target PDEs such as its formulation and/or data of its solution for pre-training. In this work, we propose to construct transferable neural feature spaces from purely function approximation perspectives without using PDE information. The construction of the feature space involves re-parameterization of the hidden neurons and uses auxiliary functions to tune the resulting feature space. Theoretical analysis shows the high quality of the produced feature space, i.e., uniformly distributed neurons. Extensive numerical experiments verify the outstanding performance of our method, including significantly improved transferability, e.g., using the same feature space for various PDEs with different domains and boundary conditions, and the superior accuracy, e.g., several orders of magnitude smaller mean squared error than the state of the art methods.

Sparse matrix representations are ubiquitous in computational science and machine learning, leading to significant reductions in compute time, in comparison to dense representation, for problems that have local connectivity. The adoption of sparse representation in leading ML frameworks such as PyTorch is incomplete, however, with support for both automatic differentiation and GPU acceleration missing. In this work, we present an implementation of a CSR-based sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix operations, as well as automatic differentiability. We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司