We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called Phi-FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H1 norm for the velocity and L2 for pressure; numerically also in the L2 norm for the velocity).
One of the challenges of quantum computers in the near- and mid- term is the limited number of qubits we can use for computations. Finding methods that achieve useful quantum improvements under size limitations is thus a key question in the field. In this vein, it was recently shown that a hybrid classical-quantum method can help provide polynomial speed-ups to classical divide-and-conquer algorithms, even when only given access to a quantum computer much smaller than the problem itself. In this work, we study the hybrid divide-and-conquer method in the context of tree search algorithms, and extend it by including quantum backtracking, which allows better results than previous Grover-based methods. Further, we provide general criteria for polynomial speed-ups in the tree search context, and provide a number of examples where polynomial speed ups, using arbitrarily smaller quantum computers, can be obtained. We provide conditions for speedups for the well known algorithm of DPLL, and we prove threshold-free speed-ups for the PPSZ algorithm (the core of the fastest exact Boolean satisfiability solver) for well-behaved classes of formulas. We also provide a simple example where speed-ups can be obtained in an algorithm-independent fashion, under certain well-studied complexity-theoretical assumptions. Finally, we briefly discuss the fundamental limitations of hybrid methods in providing speed-ups for larger problems.
In this paper we analyze a pressure-robust method based on divergence-free mixed finite element methods with continuous interior penalty stabilization. The main goal is to prove an $O(h^{k+1/2})$ error estimate for the $L^2$ norm of the velocity in the convection dominated regime. This bound is pressure robust (the error bound of the velocity does not depend on the pressure) and also convection robust (the constants in the error bounds are independent of the Reynolds number).
The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to compute a divergence free velocity. The non-conforming Crouzeix-Raviart finite element are convenient since they induce local mass conservation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This implies that they can easily handle anisotropic mesh [1, 2]. However spurious velocities may appear and damage the approximation. We propose a scheme here that allows to reduce the spurious velocities. It is based on a new discretisation for the gradient of pressure based on the symmetric MPFA scheme (finite volume MultiPoint Flux Approximation) [3, 4, 5].
The Variational Monte Carlo (VMC) is a promising approach for computing the ground state energy of many-body quantum problems and attracts more and more interests due to the development of machine learning. The recent paradigms in VMC construct neural networks as trial wave functions, sample quantum configurations using Markov chain Monte Carlo (MCMC) and train neural networks with stochastic gradient descent (SGD) method. However, the theoretical convergence of VMC is still unknown when SGD interacts with MCMC sampling given a well-designed trial wave function. Since MCMC reduces the difficulty of estimating gradients, it has inevitable bias in practice. Moreover, the local energy may be unbounded, which makes it harder to analyze the error of MCMC sampling. Therefore, we assume that the local energy is sub-exponential and use the Bernstein inequality for non-stationary Markov chains to derive error bounds of the MCMC estimator. Consequently, VMC is proven to have a first order convergence rate $O(\log K/\sqrt{n K})$ with $K$ iterations and a sample size $n$. It partially explains how MCMC influences the behavior of SGD. Furthermore, we verify the so-called correlated negative curvature condition and relate it to the zero-variance phenomena in solving eigenvalue functions. It is shown that VMC escapes from saddle points and reaches $(\epsilon,\epsilon^{1/4})$ -approximate second order stationary points or $\epsilon^{1/2}$-variance points in at least $O(\epsilon^{-11/2}\log^{2}(1/\epsilon) )$ steps with high probability. Our analysis enriches the understanding of how VMC converges efficiently and can be applied to general variational methods in physics and statistics.
Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates are a priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the $H^s$ norm during the training.
In this paper, we will show the $L^p$-resolvent estimate for the finite element approximation of the Stokes operator for $p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$, where $N \ge 2$ is the dimension of the domain. It is expected that this estimate can be applied to error estimates for finite element approximation of the non-stationary Navier--Stokes equations, since studies in this direction are successful in numerical analysis of nonlinear parabolic equations. To derive the resolvent estimate, we introduce the solution of the Stokes resolvent problem with a discrete external force. We then obtain local energy error estimate according to a novel localization technique and establish global $L^p$-type error estimates. The restriction for $p$ is caused by the treatment of lower-order terms appearing in the local energy error estimate. Our result may be a breakthrough in the $L^p$-theory of finite element methods for the non-stationary Navier--Stokes equations.
We present a strongly conservative and pressure-robust hybridizable discontinuous Galerkin method for the coupled time-dependent Navier-Stokes and Darcy problem. We show existence and uniqueness of a solution and present an optimal a priori error analysis for the fully discrete problem when using Backward Euler time stepping. The theoretical results are verified by numerical examples.
The paper provides a new perspective on peak- and average-constrained Gaussian channels. Such channels model optical wireless communication (OWC) systems which employ intensity-modulation with direct detection (IM/DD). First, the paper proposes a new, capacity-preserving vector binary channel (VBC) model, consisting of dependent binary noisy bit-pipes. Then, to simplify coding over this VBC, the paper proposes coding schemes with varying levels of complexity, building on the capacity of binary-symmetric channels (BSC) and channels with state. The achievable rates are compared to capacity and capacity bounds, showing that coding for the BSC with state over the VBC achieves rates close to capacity at moderate to high signal-to-noise ratio (SNR), whereas simpler schemes achieve lower rates at lower complexity. The presented coding schemes are realizable using capacity-achieving codes for binary-input channels, such as polar codes. Numerical results are provided to validate the theoretical results and demonstrate the applicability of the proposed schemes.
The time-marching strategy, which propagates the solution from one time step to the next, is a natural strategy for solving time-dependent differential equations on classical computers, as well as for solving the Hamiltonian simulation problem on quantum computers. For more general linear differential equations, a time-marching based quantum solver can suffer from exponentially vanishing success probability with respect to the number of time steps and is thus considered impractical. We solve this problem by repeatedly invoking a technique called the uniform singular value amplification, and the overall success probability can be lower bounded by a quantity that is independent of the number of time steps. The success probability can be further improved using a compression gadget lemma. This provides a path of designing quantum differential equation solvers that is alternative to those based on quantum linear systems algorithms (QLSA). We demonstrate the performance of the time-marching strategy with a high-order integrator based on the truncated Dyson series. The complexity of the algorithm depends linearly on the amplification ratio, which quantifies the deviation from a unitary dynamics. We prove that the linear dependence on the amplification ratio attains the query complexity lower bound and thus cannot be improved in the worst case. This algorithm also surpasses existing QLSA based solvers in three aspects: (1) the coefficient matrix $A(t)$ does not need to be diagonalizable. (2) $A(t)$ can be non-smooth, and is only of bounded variation. (3) It can use fewer queries to the initial state. Finally, we demonstrate the time-marching strategy with a first-order truncated Magnus series, while retaining the aforementioned benefits. Our analysis also raises some open questions concerning the differences between time-marching and QLSA based methods for solving differential equations.
We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.