亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Outdoor advertising, such as roadside billboards, plays a significant role in marketing campaigns but can also be a distraction for drivers, potentially leading to accidents. In this study, we propose a pipeline for evaluating the significance of roadside billboards in videos captured from a driver's perspective. We have collected and annotated a new BillboardLamac dataset, comprising eight videos captured by drivers driving through a predefined path wearing eye-tracking devices. The dataset includes annotations of billboards, including 154 unique IDs and 155 thousand bounding boxes, as well as eye fixation data. We evaluate various object tracking methods in combination with a YOLOv8 detector to identify billboard advertisements with the best approach achieving 38.5 HOTA on BillboardLamac. Additionally, we train a random forest classifier to classify billboards into three classes based on the length of driver fixations achieving 75.8% test accuracy. An analysis of the trained classifier reveals that the duration of billboard visibility, its saliency, and size are the most influential features when assessing billboard significance.

相關內容

In first-price and all-pay auctions under the standard symmetric independent private-values model, we show that the unique Bayesian Coarse Correlated Equilibrium with symmetric, differentiable and strictly increasing bidding strategies is the unique strict Bayesian Nash Equilibrium. Interestingly, this result does not require assumptions on the prior distribution. The proof is based on a dual bound of the infinite-dimensional linear program. Numerical experiments without restrictions on bidding strategies show that for first-price auctions and discretisations up to 21 of the type and bid space, increasing discretisation sizes actually increase the concentration of Bayesian Coarse Correlated Equilibrium over the Bayesian Nash Equilibrium, so long as the prior c.d.f. is concave. Such a concentration is also observed for all-pay auctions, independent of the prior distribution. Overall, our results imply that the equilibria of these important class of auctions are indeed learnable.

Teleoperation of mobile manipulators within a home environment can significantly enhance the independence of individuals with severe motor impairments, allowing them to regain the ability to perform self-care and household tasks. There is a critical need for novel teleoperation interfaces to offer effective alternatives for individuals with impairments who may encounter challenges in using existing interfaces due to physical limitations. In this work, we iterate on one such interface, HAT (Head-Worn Assistive Teleoperation), an inertial-based wearable integrated into any head-worn garment. We evaluate HAT through a 7-day in-home study with Henry Evans, a non-speaking individual with quadriplegia who has participated extensively in assistive robotics studies. We additionally evaluate HAT with a proposed shared control method for mobile manipulators termed Driver Assistance and demonstrate how the interface generalizes to other physical devices and contexts. Our results show that HAT is a strong teleoperation interface across key metrics including efficiency, errors, learning curve, and workload. Code and videos are located on our project website.

The characteristics and interpretability of data become more abstract and complex as the dimensionality increases. Common patterns and relationships that hold in in low-dimensional space may fail to hold in higher-dimensional space. This phenomenon leads to a decreasing performance for the regression, classification or clustering models or algorithms, which is known as curse of dimensionality. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

The rapid growth of news dissemination and user engagement on social media has raised concerns about the influence and societal impact of biased and unreliable information. As a response to these concerns, a substantial body of research has been dedicated to understanding how users interact with different news. However, this research has primarily analyzed publicly shared posts. With a significant portion of engagement taking place within Facebook's private sphere, it is therefore important to also consider the private posts. In this paper, we present the first comprehensive comparison of the interaction patterns and depth of engagement between public and private posts of different types of news content shared on Facebook. To compare these patterns, we gathered and analyzed two complementary datasets: the first includes interaction data for all Facebook posts (private + public) referencing a manually labeled collection of over 19K news articles, while the second contains only interaction data for public posts tracked by CrowdTangle. As part of our methodology, we introduce several carefully designed data processing steps that address some critical aspects missed by prior works but that (through our iterative discussions and feedback with the CrowdTangle team) emerged as important to ensure fairness for this type of study. Our findings highlight significant disparities in interaction patterns across various news classes and spheres. For example, our statistical analysis demonstrates that users engage significantly more deeply with news in the private sphere compared to the public one, underscoring the pivotal role of considering both the public and private spheres of Facebook in future research. Beyond its scholarly impact, the findings of this study can benefit Facebook content moderators, regulators, and policymakers, contributing to a healthier online discourse.

Despite the benefits of personalizing items and information tailored to users' needs, it has been found that recommender systems tend to introduce biases that favor popular items or certain categories of items, and dominant user groups. In this study, we aim to characterize the systematic errors of a recommendation system and how they manifest in various accountability issues, such as stereotypes, biases, and miscalibration. We propose a unified framework that distinguishes the sources of prediction errors into a set of key measures that quantify the various types of system-induced effects, both at the individual and collective levels. Based on our measuring framework, we examine the most widely adopted algorithms in the context of movie recommendation. Our research reveals three important findings: (1) Differences between algorithms: recommendations generated by simpler algorithms tend to be more stereotypical but less biased than those generated by more complex algorithms. (2) Disparate impact on groups and individuals: system-induced biases and stereotypes have a disproportionate effect on atypical users and minority groups (e.g., women and older users). (3) Mitigation opportunity: using structural equation modeling, we identify the interactions between user characteristics (typicality and diversity), system-induced effects, and miscalibration. We further investigate the possibility of mitigating system-induced effects by oversampling underrepresented groups and individuals, which was found to be effective in reducing stereotypes and improving recommendation quality. Our research is the first systematic examination of not only system-induced effects and miscalibration but also the stereotyping issue in recommender systems.

Traffic accidents are one of the biggest challenges in a society where commuting is so important. What triggers an accident can be dependent on several subjective parameters and varies within each region, city, or country. In the same way, it is important to understand those parameters in order to provide a knowledge basis to support decisions regarding future cases prevention. The literature presents several works where machine learning algorithms are used for prediction of accidents or severity of accidents, in which city-level datasets were used as evaluation studies. This work attempts to add to the diversity of research, by focusing mainly on concentration of accidents and how machine learning can be used to predict hotspots. This approach demonstrated to be a useful technique for authorities to understand nuances of accident concentration behavior. For the first time, data from the Federal District of Brazil collected from forensic traffic accident analysts were used and combined with data from local weather conditions to predict hotspots of collisions. Out of the five algorithms we considered, two had good performance: Multi-layer Perceptron and Random Forest, with the latter being the best one at 98% accuracy. As a result, we identify that weather parameters are not as important as the accident location, demonstrating that local intervention is important to reduce the number of accidents.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

北京阿比特科技有限公司