This paper presents a new perspective on time series forecasting. In existing time series forecasting methods, the models take a sequence of numerical values as input and yield numerical values as output. The existing SOTA models are largely based on the Transformer architecture, modified with multiple encoding mechanisms to incorporate the context and semantics around the historical data. Inspired by the successes of pre-trained language foundation models, we pose a question about whether these models can also be adapted to solve time-series forecasting. Thus, we propose a new forecasting paradigm: prompt-based time series forecasting (PromptCast). In this novel task, the numerical input and output are transformed into prompts and the forecasting task is framed in a sentence-to-sentence manner, making it possible to directly apply language models for forecasting purposes. To support and facilitate the research of this task, we also present a large-scale dataset (PISA) that includes three real-world forecasting scenarios. We evaluate different SOTA numerical-based forecasting methods and language generation models. The benchmark results with various forecasting settings demonstrate the proposed PromptCast with language generation models is a promising research direction. Additionally, in comparison to conventional numerical-based forecasting, PromptCast shows a much better generalization ability under the zero-shot setting.
Unifying the correlative single-view satellite image building extraction and height estimation tasks indicates a promising way to share representations and acquire generalist model for large-scale urban 3D reconstruction. However, the common spatial misalignment between building footprints and stereo-reconstructed nDSM height labels incurs degraded performance on both tasks. To address this issue, we propose a Height-hierarchy Guided Dual-decoder Network (HGDNet) to estimate building height. Under the guidance of synthesized discrete height-hierarchy nDSM, auxiliary height-hierarchical building extraction branch enhance the height estimation branch with implicit constraints, yielding an accuracy improvement of more than 6% on the DFC 2023 track2 dataset. Additional two-stage cascade architecture is adopted to achieve more accurate building extraction. Experiments on the DFC 2023 Track 2 dataset shows the superiority of the proposed method in building height estimation ({\delta}1:0.8012), instance extraction (AP50:0.7730), and the final average score 0.7871 ranks in the first place in test phase.
We present PAT, a transformer-based network that learns complex temporal co-occurrence action dependencies in a video by exploiting multi-scale temporal features. In existing methods, the self-attention mechanism in transformers loses the temporal positional information, which is essential for robust action detection. To address this issue, we (i) embed relative positional encoding in the self-attention mechanism and (ii) exploit multi-scale temporal relationships by designing a novel non hierarchical network, in contrast to the recent transformer-based approaches that use a hierarchical structure. We argue that joining the self-attention mechanism with multiple sub-sampling processes in the hierarchical approaches results in increased loss of positional information. We evaluate the performance of our proposed approach on two challenging dense multi-label benchmark datasets, and show that PAT improves the current state-of-the-art result by 1.1% and 0.6% mAP on the Charades and MultiTHUMOS datasets, respectively, thereby achieving the new state-of-the-art mAP at 26.5% and 44.6%, respectively. We also perform extensive ablation studies to examine the impact of the different components of our proposed network.
Congestion Control (CC) plays a fundamental role in optimizing traffic in Data Center Networks (DCN). Currently, DCNs mainly implement two main CC protocols: DCTCP and DCQCN. Both protocols -- and their main variants -- are based on Explicit Congestion Notification (ECN), where intermediate switches mark packets when they detect congestion. The ECN configuration is thus a crucial aspect on the performance of CC protocols. Nowadays, network experts set static ECN parameters carefully selected to optimize the average network performance. However, today's high-speed DCNs experience quick and abrupt changes that severely change the network state (e.g., dynamic traffic workloads, incast events, failures). This leads to under-utilization and sub-optimal performance. This paper presents GraphCC, a novel Machine Learning-based framework for in-network CC optimization. Our distributed solution relies on a novel combination of Multi-agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN), and it is compatible with widely deployed ECN-based CC protocols. GraphCC deploys distributed agents on switches that communicate with their neighbors to cooperate and optimize the global ECN configuration. In our evaluation, we test the performance of GraphCC under a wide variety of scenarios, focusing on the capability of this solution to adapt to new scenarios unseen during training (e.g., new traffic workloads, failures, upgrades). We compare GraphCC with a state-of-the-art MARL-based solution for ECN tuning -- ACC -- and observe that our proposed solution outperforms the state-of-the-art baseline in all of the evaluation scenarios, showing improvements up to $20\%$ in Flow Completion Time as well as significant reductions in buffer occupancy ($38.0-85.7\%$).
Large language models~(LLMs) are instruction followers, but it can be challenging to find the best instruction for different situations, especially for black-box LLMs on which backpropagation is forbidden. Instead of directly optimizing the discrete instruction, we optimize a low-dimensional soft prompt applied to an open-source LLM to generate the instruction for the black-box LLM. On each iteration of the proposed method, which we call InstructZero, a soft prompt is converted into an instruction using the open-source LLM, which is then submitted to the black-box LLM for zero-shot evaluation, and the performance is sent to Bayesian optimization to produce new soft prompts improving the zero-shot performance. We evaluate InstructZero on different combinations of open-source LLMs and APIs including Vicuna and ChatGPT. Our results show that InstructZero outperforms SOTA auto-instruction methods across a variety of downstream tasks. Our code and data are publicly available at //github.com/Lichang-Chen/InstructZero.
Retrieval augmented models show promise in enhancing traditional language models by improving their contextual understanding, integrating private data, and reducing hallucination. However, the processing time required for retrieval augmented large language models poses a challenge when applying them to tasks that require real-time responses, such as composition assistance. To overcome this limitation, we propose the Hybrid Retrieval-Augmented Generation (HybridRAG) framework that leverages a hybrid setting that combines both client and cloud models. HybridRAG incorporates retrieval-augmented memory generated asynchronously by a Large Language Model (LLM) in the cloud. By integrating this retrieval augmented memory, the client model acquires the capability to generate highly effective responses, benefiting from the LLM's capabilities. Furthermore, through asynchronous memory integration, the client model is capable of delivering real-time responses to user requests without the need to wait for memory synchronization from the cloud. Our experiments on Wikitext and Pile subsets show that HybridRAG achieves lower latency than a cloud-based retrieval-augmented LLM, while outperforming client-only models in utility.
Creative coding tasks are often exploratory in nature. When producing digital artwork, artists usually begin with a high-level semantic construct such as a "stained glass filter" and programmatically implement it by varying code parameters such as shape, color, lines, and opacity to produce visually appealing results. Based on interviews with artists, it can be effortful to translate semantic constructs to program syntax, and current programming tools don't lend well to rapid creative exploration. To address these challenges, we introduce Spellburst, a large language model (LLM) powered creative-coding environment. Spellburst provides (1) a node-based interface that allows artists to create generative art and explore variations through branching and merging operations, (2) expressive prompt-based interactions to engage in semantic programming, and (3) dynamic prompt-driven interfaces and direct code editing to seamlessly switch between semantic and syntactic exploration. Our evaluation with artists demonstrates Spellburst's potential to enhance creative coding practices and inform the design of computational creativity tools that bridge semantic and syntactic spaces.
The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.
Although Transformer-based methods have significantly improved state-of-the-art results for long-term series forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer ({\bf FEDformer}), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by $14.8\%$ and $22.6\%$ for multivariate and univariate time series, respectively. the code will be released soon.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.