We provide a complete solution to the problem of infinite quantum signal processing for the class of Szeg\H o functions, which are functions that satisfy a logarithmic integrability condition and include almost any function that allows for a quantum signal processing representation. We do so by introducing a new algorithm called the Riemann-Hilbert-Weiss algorithm, which can compute any individual phase factor independent of all other phase factors. Our algorithm is also the first provably stable numerical algorithm for computing phase factors of any arbitrary Szeg\H o function. The proof of stability involves solving a Riemann-Hilbert factorization problem in nonlinear Fourier analysis using elements of spectral theory.
Zeitlin's model is a spatial discretization for the 2-D Euler equations on the flat 2-torus or the 2-sphere. Contrary to other discretizations, it preserves the underlying geometric structure, namely that the Euler equations describe Riemannian geodesics on a Lie group. Here we show how to extend Zeitlin's approach to the axisymmetric Euler equations on the 3-sphere. It is the first discretization of the 3-D Euler equations that fully preserves the geometric structure. Thus, this finite-dimensional model admits Riemannian curvature and Jacobi equations, which are discussed.
We show that Pfaffians or contiguity relations of hypergeometric functions of several variables give a direct sampling algorithm from toric models in statistics, which is a Markov chain on a lattice generated by a matrix $A$. A correspondence among graphical models and $A$-hypergeometric system is discussed and we give a sum formula of special values of $A$-hypergeometric polynomials. Some hypergeometric series which are interesting in view of statistics are presented.
In this paper, Lie symmetry analysis method is applied to the (2+1)-dimensional time fractional Kadomtsev-Petviashvili (KP) equation with the mixed derivative of Riemann-Liouville time-fractional derivative and integer-order $x$-derivative. We obtained all the Lie symmetries admitted by the KP equation and used them to reduce the (2+1)-dimensional fractional partial differential equation with Riemann-Liouville fractional derivative to some (1+1)-dimensional fractional partial differential equations with Erd\'{e}lyi-Kober fractional derivative or Riemann-Liouville fractional derivative, thereby getting some exact solutions of the reduced equations. In addition, the new conservation theorem and the generalization of Noether operators are developed to construct the conservation laws for the equation studied.
By studying the existing higher order derivation formulas of rational B\'{e}zier curves, we find that they fail when the order of the derivative exceeds the degree of the curves. In this paper, we present a new derivation formula for rational B\'{e}zier curves that overcomes this drawback and show that the $k$th degree derivative of a $n$th degree rational B\'{e}zier curve can be written in terms of a $(2^kn)$th degree rational B\'{e}zier curve.we also consider the properties of the endpoints and the bounds of the derivatives.
This work proposes a novel numerical scheme for solving the high-dimensional Hamilton-Jacobi-Bellman equation with a functional hierarchical tensor ansatz. We consider the setting of stochastic control, whereby one applies control to a particle under Brownian motion. In particular, the existence of diffusion presents a new challenge to conventional tensor network methods for deterministic optimal control. To overcome the difficulty, we use a general regression-based formulation where the loss term is the Bellman consistency error combined with a Sobolev-type penalization term. We propose two novel sketching-based subroutines for obtaining the tensor-network approximation to the action-value functions and the value functions, which greatly accelerate the convergence for the subsequent regression phase. We apply the proposed approach successfully to two challenging control problems with Ginzburg-Landau potential in 1D and 2D with 64 variables.
Several forms for constructing novel physics-informed neural-networks (PINN) for the solution of partial-differential-algebraic equations based on derivative operator splitting are proposed, using the nonlinear Kirchhoff rod as a prototype for demonstration. The open-source DeepXDE is likely the most well documented framework with many examples. Yet, we encountered some pathological problems and proposed novel methods to resolve them. Among these novel methods are the PDE forms, which evolve from the lower-level form with fewer unknown dependent variables to higher-level form with more dependent variables, in addition to those from lower-level forms. Traditionally, the highest-level form, the balance-of-momenta form, is the starting point for (hand) deriving the lowest-level form through a tedious (and error prone) process of successive substitutions. The next step in a finite element method is to discretize the lowest-level form upon forming a weak form and linearization with appropriate interpolation functions, followed by their implementation in a code and testing. The time-consuming tedium in all of these steps could be bypassed by applying the proposed novel PINN directly to the highest-level form. We developed a script based on JAX. While our JAX script did not show the pathological problems of DDE-T (DDE with TensorFlow backend), it is slower than DDE-T. That DDE-T itself being more efficient in higher-level form than in lower-level form makes working directly with higher-level form even more attractive in addition to the advantages mentioned further above. Since coming up with an appropriate learning-rate schedule for a good solution is more art than science, we systematically codified in detail our experience running optimization through a normalization/standardization of the network-training process so readers can reproduce our results.
Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols and GLT momentary symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.
Classical-quantum hybrid algorithms have recently garnered significant attention, which are characterized by combining quantum and classical computing protocols to obtain readout from quantum circuits of interest. Recent progress due to Lubasch et al in a 2019 paper provides readout for solutions to the Schrodinger and Inviscid Burgers equations, by making use of a new variational quantum algorithm (VQA) which determines the ground state of a cost function expressed with a superposition of expectation values and variational parameters. In the following, we analyze additional computational prospects in which the VQA can reliably produce solutions to other PDEs that are comparable to solutions that have been previously realized classically, which are characterized with noiseless quantum simulations. To determine the range of nonlinearities that the algorithm can process for other IVPs, we study several PDEs, first beginning with the Navier-Stokes equations and progressing to other equations underlying physical phenomena ranging from electromagnetism, gravitation, and wave propagation, from simulations of the Einstein, Boussniesq-type, Lin-Tsien, Camassa-Holm, Drinfeld-Sokolov-Wilson (DSW), and Hunter-Saxton equations. To formulate optimization routines that the VQA undergoes for numerical approximations of solutions that are obtained as readout from quantum circuits, cost functions corresponding to each PDE are provided in the supplementary section after which simulations results from hundreds of ZGR-QFT ansatzae are generated.
In this study, the $\theta$-method is used for discretizing a class of evolutionary partial differential equations. Then, we transform the resultant all-at-once linear system and introduce a novel one-sided preconditioner, which can be fast implemented in a parallel-in-time way. By introducing an auxiliary two-sided preconditioned system, we provide theoretical insights into the relationship between the residuals of the generalized minimal residual (GMRES) method when applied to both one-sided and two-sided preconditioned systems. Moreover, we show that the condition number of the two-sided preconditioned matrix is uniformly bounded by a constant that is independent of the matrix size, which in turn implies that the convergence behavior of the GMRES method for the one-sided preconditioned system is guaranteed. Numerical experiments confirm the efficiency and robustness of the proposed preconditioning approach.
The Green's function, serving as a kernel function that delineates the interaction relationships of physical quantities within a field, holds significant research implications across various disciplines. It forms the foundational basis for the renowned Biot-Savart formula in fluid dynamics, the theoretical solution of the pressure Poisson equation, and et al. Despite their importance, the theoretical derivation of the Green's function is both time-consuming and labor-intensive. In this study, we employed DISCOVER, an advanced symbolic regression method leveraging symbolic binary trees and reinforcement learning, to identify unknown Green's functions for several elementary partial differential operators, including Laplace operators, Helmholtz operators, and second-order differential operators with jump conditions. The Laplace and Helmholtz operators are particularly vital for resolving the pressure Poisson equation, while second-order differential operators with jump conditions are essential for analyzing multiphase flows and shock waves. By incorporating physical hard constraints, specifically symmetry properties inherent to these self-adjoint operators, we significantly enhanced the performance of the DISCOVER framework, potentially doubling its efficacy. Notably, the Green's functions discovered for the Laplace and Helmholtz operators precisely matched the true Green's functions. Furthermore, for operators without known exact Green's functions, such as the periodic Helmholtz operator and second-order differential operators with jump conditions, we identified potential Green's functions with solution error on the order of 10^(-10). This application of symbolic regression to the discovery of Green's functions represents a pivotal advancement in leveraging artificial intelligence to accelerate scientific discoveries, particularly in fluid dynamics and related fields.