亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Green's function, serving as a kernel function that delineates the interaction relationships of physical quantities within a field, holds significant research implications across various disciplines. It forms the foundational basis for the renowned Biot-Savart formula in fluid dynamics, the theoretical solution of the pressure Poisson equation, and et al. Despite their importance, the theoretical derivation of the Green's function is both time-consuming and labor-intensive. In this study, we employed DISCOVER, an advanced symbolic regression method leveraging symbolic binary trees and reinforcement learning, to identify unknown Green's functions for several elementary partial differential operators, including Laplace operators, Helmholtz operators, and second-order differential operators with jump conditions. The Laplace and Helmholtz operators are particularly vital for resolving the pressure Poisson equation, while second-order differential operators with jump conditions are essential for analyzing multiphase flows and shock waves. By incorporating physical hard constraints, specifically symmetry properties inherent to these self-adjoint operators, we significantly enhanced the performance of the DISCOVER framework, potentially doubling its efficacy. Notably, the Green's functions discovered for the Laplace and Helmholtz operators precisely matched the true Green's functions. Furthermore, for operators without known exact Green's functions, such as the periodic Helmholtz operator and second-order differential operators with jump conditions, we identified potential Green's functions with solution error on the order of 10^(-10). This application of symbolic regression to the discovery of Green's functions represents a pivotal advancement in leveraging artificial intelligence to accelerate scientific discoveries, particularly in fluid dynamics and related fields.

相關內容

Convergence rates for $L_2$ approximation in a Hilbert space $H$ are a central theme in numerical analysis. The present work is inspired by Schaback (Math. Comp., 1999), who showed, in the context of best pointwise approximation for radial basis function interpolation, that the convergence rate for sufficiently smooth functions can be doubled, compared to the best rate for functions in the "native space" $H$. Motivated by this, we obtain a general result for $H$-orthogonal projection onto a finite dimensional subspace of $H$: namely, that any known $L_2$ convergence rate for all functions in $H$ translates into a doubled $L_2$ convergence rate for functions in a smoother normed space $B$, along with a similarly improved error bound in the $H$-norm, provided that $L_2$, $H$ and $B$ are suitably related. As a special case we improve the known $L_2$ and $H$-norm convergence rates for kernel interpolation in reproducing kernel Hilbert spaces, with particular attention to a recent study (Kaarnioja, Kazashi, Kuo, Nobile, Sloan, Numer. Math., 2022) of periodic kernel-based interpolation at lattice points applied to parametric partial differential equations. A second application is to radial basis function interpolation for general conditionally positive definite basis functions, where again the $L_2$ convergence rate is doubled, and the convergence rate in the native space norm is similarly improved, for all functions in a smoother normed space $B$.

We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial ``deflation'' step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the ``deflated function class'' in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. Leveraging another less demanding natural seminorm, we also show similar bounds, though with implicit dependence on the sample size, in the more general case where finite exponential moments cannot be assumed. We also provide approximations of the tail bounds in terms of the more prevalent Orlicz norms or their ``incomplete'' versions under suitable moment conditions.

To avoid ineffective collisions between the equilibrium states, the hybrid method with deviational particles (HDP) has been proposed to integrate the Fokker-Planck-Landau system, while leaving a new issue in sampling deviational particles from the high-dimensional source term. In this paper, we present an adaptive sampling (AS) strategy that first adaptively reconstructs a piecewise constant approximation of the source term based on sequential clustering via discrepancy estimation, and then samples deviational particles directly from the resulting adaptive piecewise constant function without rejection. The mixture discrepancy, which can be easily calculated thanks to its explicit analytical expression, is employed as a measure of uniformity instead of the star discrepancy the calculation of which is NP-hard. The resulting method, dubbed the HDP-AS method, runs approximately ten times faster than the HDP method while keeping the same accuracy in the Landau damping, two stream instability, bump on tail and Rosenbluth's test problem.

Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning. Their appeal lies in the rich feature map induced by the dynamics of a quantum substrate - the quantum reservoir - and the efficient post-measurement training via linear regression. Here we study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series. We show that the achievable Fourier frequencies are determined by the data encoding scheme, while Fourier coefficients depend on both the reservoir and the measurement. Notably, the expressivity of QELMs is fundamentally limited by the number of Fourier frequencies and the number of observables, while the complexity of the prediction hinges on the reservoir. As a cautionary note on scalability, we identify four sources that can lead to the exponential concentration of the observables as the system size grows (randomness, hardware noise, entanglement, and global measurements) and show how this can turn QELMs into useless input-agnostic oracles. In particular, our result on the reservoir-induced concentration strongly indicates that quantum reservoirs drawn from a highly random ensemble make QELM models unscalable. Our analysis elucidates the potential and fundamental limitations of QELMs, and lays the groundwork for systematically exploring quantum reservoir systems for other machine learning tasks.

The preservation of stochastic orders by distortion functions has become a topic of increasing interest in the reliability analysis of coherent systems. The reason of this interest is that the reliability function of a coherent system with identically distributed components can be represented as a distortion function of the common reliability function of the components. In this framework, we study the preservation of the excess wealth order, the total time on test transform order, the decreasing mean residual live order, and the quantile mean inactivity time order by distortion functions. The results are applied to study the preservation of these stochastic orders under the formation of coherent systems with exchangeable components.

In this study, we address the challenge of solving elliptic equations with quasiperiodic coefficients. To achieve accurate and efficient computation, we introduce the projection method, which enables the embedding of quasiperiodic systems into higher-dimensional periodic systems. To enhance the computational efficiency, we propose a compressed storage strategy for the stiffness matrix by its multi-level block circulant structure, significantly reducing memory requirements. Furthermore, we design a diagonal preconditioner to efficiently solve the resulting high-dimensional linear system by reducing the condition number of the stiffness matrix. These techniques collectively contribute to the computational effectiveness of our proposed approach. Convergence analysis shows the spectral accuracy of the proposed method. We demonstrate the effectiveness and accuracy of our approach through a series of numerical examples. Moreover, we apply our method to achieve a highly accurate computation of the homogenized coefficients for a quasiperiodic multiscale elliptic equation.

Chaos is generic in strongly-coupled recurrent networks of model neurons, and thought to be an easily accessible dynamical regime in the brain. While neural chaos is typically seen as an impediment to robust computation, we show how such chaos might play a functional role in allowing the brain to learn and sample from generative models. We construct architectures that combine a classic model of neural chaos either with a canonical generative modeling architecture or with energy-based models of neural memory. We show that these architectures have appealing properties for sampling, including easy biologically-plausible control of sampling rates via overall gain modulation.

We study the decidability and complexity of non-cooperative rational synthesis problem (abbreviated as NCRSP) for some classes of probabilistic strategies. We show that NCRSP for stationary strategies and Muller objectives is in 3-EXPTIME, and if we restrict the strategies of environment players to be positional, NCRSP becomes NEXPSPACE solvable. On the other hand, NCRSP_>, which is a variant of NCRSP, is shown to be undecidable even for pure finite-state strategies and terminal reachability objectives. Finally, we show that NCRSP becomes EXPTIME solvable if we restrict the memory of a strategy to be the most recently visited t vertices where t is linear in the size of the game.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司