亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Chaos is generic in strongly-coupled recurrent networks of model neurons, and thought to be an easily accessible dynamical regime in the brain. While neural chaos is typically seen as an impediment to robust computation, we show how such chaos might play a functional role in allowing the brain to learn and sample from generative models. We construct architectures that combine a classic model of neural chaos either with a canonical generative modeling architecture or with energy-based models of neural memory. We show that these architectures have appealing properties for sampling, including easy biologically-plausible control of sampling rates via overall gain modulation.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · MoDELS · binary · INTERACT ·
2024 年 11 月 5 日

For the distributions of finitely many binary random variables, we study the interaction of restrictions of the supports with conditional independence constraints. We prove a generalization of the Hammersley-Clifford theorem for distributions whose support is a natural distributive lattice: that is, any distribution which has natural lattice support and satisfies the pairwise Markov statements of a graph must factor according to the graph. We also show a connection to the Hibi ideals of lattices.

In causal inference, many estimands of interest can be expressed as a linear functional of the outcome regression function; this includes, for example, average causal effects of static, dynamic and stochastic interventions. For learning such estimands, in this work, we propose novel debiased machine learning estimators that are doubly robust asymptotically linear, thus providing not only doubly robust consistency but also facilitating doubly robust inference (e.g., confidence intervals and hypothesis tests). To do so, we first establish a key link between calibration, a machine learning technique typically used in prediction and classification tasks, and the conditions needed to achieve doubly robust asymptotic linearity. We then introduce calibrated debiased machine learning (C-DML), a unified framework for doubly robust inference, and propose a specific C-DML estimator that integrates cross-fitting, isotonic calibration, and debiased machine learning estimation. A C-DML estimator maintains asymptotic linearity when either the outcome regression or the Riesz representer of the linear functional is estimated sufficiently well, allowing the other to be estimated at arbitrarily slow rates or even inconsistently. We propose a simple bootstrap-assisted approach for constructing doubly robust confidence intervals. Our theoretical and empirical results support the use of C-DML to mitigate bias arising from the inconsistent or slow estimation of nuisance functions.

The balanced incomplete block design (BIBD) problem is a difficult combinatorial problem with a large number of symmetries, which add complexity to its resolution. In this paper, we propose a dual (integer) problem representation that serves as an alternative to the classical binary formulation of the problem. We attack this problem incrementally: firstly, we propose basic algorithms (i.e. local search techniques and genetic algorithms) intended to work separately on the two different search spaces (i.e. binary and integer); secondly, we propose two hybrid schemes: an integrative approach (i.e. a memetic algorithm) and a collaborative model in which the previous methods work in parallel, occasionally exchanging information. Three distinct two-dimensional structures are proposed as communication topology among the algorithms involved in the collaborative model, as well as a number of migration and acceptance criteria for sending and receiving data. An empirical analysis comparing a large number of instances of our schemes (with algorithms possibly working on different search spaces and with/without symmetry breaking methods) shows that some of these algorithms can be considered the state of the art of the metaheuristic methods applied to finding BIBDs. Moreover, our cooperative proposal is a general scheme from which distinct algorithmic variants can be instantiated to handle symmetrical optimisation problems. For this reason, we have also analysed its key parameters, thereby providing general guidelines for the design of efficient/robust cooperative algorithms devised from our proposal.

Parameter inference for linear and non-Gaussian state space models is challenging because the likelihood function contains an intractable integral over the latent state variables. While Markov chain Monte Carlo (MCMC) methods provide exact samples from the posterior distribution as the number of samples go to infinity, they tend to have high computational cost, particularly for observations of a long time series. Variational Bayes (VB) methods are a useful alternative when inference with MCMC methods is computationally expensive. VB methods approximate the posterior density of the parameters by a simple and tractable distribution found through optimisation. In this paper, we propose a novel sequential variational Bayes approach that makes use of the Whittle likelihood for computationally efficient parameter inference in this class of state space models. Our algorithm, which we call Recursive Variational Gaussian Approximation with the Whittle Likelihood (R-VGA-Whittle), updates the variational parameters by processing data in the frequency domain. At each iteration, R-VGA-Whittle requires the gradient and Hessian of the Whittle log-likelihood, which are available in closed form for a wide class of models. Through several examples using a linear Gaussian state space model and a univariate/bivariate non-Gaussian stochastic volatility model, we show that R-VGA-Whittle provides good approximations to posterior distributions of the parameters and is very computationally efficient when compared to asymptotically exact methods such as Hamiltonian Monte Carlo.

In recent years, denoising diffusion models have become a crucial area of research due to their abundance in the rapidly expanding field of generative AI. While recent statistical advances have delivered explanations for the generation ability of idealised denoising diffusion models for high-dimensional target data, implementations introduce thresholding procedures for the generating process to overcome issues arising from the unbounded state space of such models. This mismatch between theoretical design and implementation of diffusion models has been addressed empirically by using a \emph{reflected} diffusion process as the driver of noise instead. In this paper, we study statistical guarantees of these denoising reflected diffusion models. In particular, we establish minimax optimal rates of convergence in total variation, up to a polylogarithmic factor, under Sobolev smoothness assumptions. Our main contributions include the statistical analysis of this novel class of denoising reflected diffusion models and a refined score approximation method in both time and space, leveraging spectral decomposition and rigorous neural network analysis.

Algorithms for generating random numbers that follow a gamma distribution with shape parameter less than unity are proposed. Acceptance-rejection algorithms are developed, based on the generalized exponential distribution. The squeeze technique is applied to our method, and then piecewise envelope functions are further considered. The proposed methods are excellent in acceptance efficiency and promising in speed.

Aperiodic autocorrelation is an important indicator of performance of sequences used in communications, remote sensing, and scientific instrumentation. Knowing a sequence's autocorrelation function, which reports the autocorrelation at every possible translation, is equivalent to knowing the magnitude of the sequence's Fourier transform. The phase problem is the difficulty in resolving this lack of phase information. We say that two sequences are equicorrelational to mean that they have the same aperiodic autocorrelation function. Sequences used in technological applications often have restrictions on their terms: they are not arbitrary complex numbers, but come from a more restricted alphabet. For example, binary sequences involve terms equal to only $+1$ and $-1$. We investigate the necessary and sufficient conditions for two sequences to be equicorrelational, where we take their alphabet into consideration. There are trivial forms of equicorrelationality arising from modifications that predictably preserve the autocorrelation, for example, negating a binary sequence or reversing the order of its terms. By a search of binary sequences up to length $44$, we find that nontrivial equicorrelationality among binary sequences does occur, but is rare. An integer $n$ is said to be equivocal when there are binary sequences of length $n$ that are nontrivially equicorrelational; otherwise $n$ is unequivocal. For $n \leq 44$, we found that the unequivocal lengths are $1$--$8$, $10$, $11$, $13$, $14$, $19$, $22$, $23$, $26$, $29$, $37$, and $38$. We pose open questions about the finitude of unequivocal numbers and the probability of nontrivial equicorrelationality occurring among binary sequences.

Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unmixing transformation based on the observed data only. The current methods for spatio-temporal blind source separation are restricted to linear unmixing, and nonlinear variants have not been implemented. In this paper, we extend identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.

Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司