亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We first design an $\mathcal{O}(n^2)$ solution for finding a maximum induced matching in permutation graphs given their permutation models, based on a dynamic programming algorithm with the aid of the sweep line technique. With the support of the disjoint-set data structure, we improve the complexity to $\mathcal{O}(m + n)$. Consequently, we extend this result to give an $\mathcal{O}(m + n)$ algorithm for the same problem in trapezoid graphs. By combining our algorithms with the current best graph identification algorithms, we can solve the MIM problem in permutation and trapezoid graphs in linear and $\mathcal{O}(n^2)$ time, respectively. Our results are far better than the best known $\mathcal{O}(mn)$ algorithm for the maximum induced matching problem in both graph classes, which was proposed by Habib et al.

相關內容

We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that for every $s\geq 1$, both problems are polynomial-time solvable for $sP_3$-free graphs and $(sP_1+P_5)$-free graphs; here, the graph $sP_3$ denotes the disjoint union of $s$ paths on three vertices and the graph $sP_1+P_5$ denotes the disjoint union of $s$ isolated vertices and a path on five vertices. Our new results for Feedback Vertex Set extend all known polynomial-time results for Feedback Vertex Set on $H$-free graphs, namely for $sP_2$-free graphs [Chiarelli et al., TCS 2018], $(sP_1+P_3)$-free graphs [Dabrowski et al., Algorithmica 2020] and $P_5$-free graphs [Abrishami et al., SODA 2021]. Together, the new results also show that both problems exhibit the same behaviour on $H$-free graphs (subject to some open cases). This is in part due to a new general algorithm we design for finding in a ($sP_3)$-free or $(sP_1+P_5)$-free graph $G$ a largest induced subgraph whose blocks belong to some finite class ${\cal C}$ of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known to behave differently on $H$-free graphs.

Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel's conjecture, when the language is bounded (i.e., a subset of $w_1^*\dots w_m^*$ for some finite words $w_1,\dots,w_m$) or when the automaton has finite ambiguity. On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to $\epsilon$-differential privacy, for which the optimal constant of the big-O notation is exactly $\exp(\epsilon)$.

We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bez\'akov\'a et al. proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O (k)} n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O(k)} n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path Above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k (diam(G) denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path Above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path Above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path Above Diameter is solvable in polynomial time for each k\in{1,\dots, 4} and is NP-complete for every k\geq 5. The parameterized complexity of Longest Path Above Diameter on general directed graphs remains an interesting open problem.

The Maximum Induced Matching problem asks to find the maximum $k$ such that, given a graph $G=(V,E)$, can we find a subset of vertices $S$ of size $k$ for which every vertices $v$ in the induced graph $G[S]$ has exactly degree $1$. In this paper, we design an exact algorithm running in $O(1.2630^n)$ time and polynomial space to solve the Maximum Induced Matching problem for graphs where each vertex has degree at most 3. Prior work solved the problem by finding the Maximum Independent Set using polynomial space in the line graph $L(G^2)$; this method uses $O(1.3139^n)$ time.

The stochastic dynamic matching problem has recently drawn attention in the stochastic-modeling community due to its numerous applications, ranging from supply-chain management to kidney exchange programs. In this paper, we consider a matching problem in which items of different classes arrive according to independent Poisson processes. Unmatched items are stored in a queue, and compatibility constraints are described by a simple graph on the classes, so that two items can be matched if their classes are neighbors in the graph. We analyze the efficiency of matching policies, not only in terms of system stability, but also in terms of matching rates between different classes. Our results rely on the observation that, under any stable policy, the matching rates satisfy a conservation equation that equates the arrival and departure rates of each item class. Our main contributions are threefold. We first introduce a mapping between the dimension of the solution set of this conservation equation, the structure of the compatibility graph, and the existence of a stable policy. In particular, this allows us to derive a necessary and sufficient stability condition that is verifiable in polynomial time. Secondly, we describe the convex polytope of non-negative solutions of the conservation equation. When this polytope is reduced to a single point, we give a closed-form expression of the solution; in general, we characterize the vertices of this polytope using again the graph structure. Lastly, we show that greedy policies cannot, in general, achieve every point in the polytope. In contrast, non-greedy policies can reach any point of the interior of this polytope, and we give a condition for these policies to also reach the boundary of the polytope.

Logistic Bandits have recently undergone careful scrutiny by virtue of their combined theoretical and practical relevance. This research effort delivered statistically efficient algorithms, improving the regret of previous strategies by exponentially large factors. Such algorithms are however strikingly costly as they require $\Omega(t)$ operations at each round. On the other hand, a different line of research focused on computational efficiency ($\mathcal{O}(1)$ per-round cost), but at the cost of letting go of the aforementioned exponential improvements. Obtaining the best of both world is unfortunately not a matter of marrying both approaches. Instead we introduce a new learning procedure for Logistic Bandits. It yields confidence sets which sufficient statistics can be easily maintained online without sacrificing statistical tightness. Combined with efficient planning mechanisms we design fast algorithms which regret performance still match the problem-dependent lower-bound of Abeille et al. (2021). To the best of our knowledge, those are the first Logistic Bandit algorithms that simultaneously enjoy statistical and computational efficiency.

We present a $(1- \varepsilon)$-approximation algorithms for maximum cardinality matchings in disk intersection graphs -- all with near linear running time. We also present estimation algorithm that returns $(1\pm \varepsilon)$-approximation to the size of such matchings -- this algorithms run in linear time for unit disks, and $O(n \log n)$ for general disks (as long as the density is relatively small).

Devising schemes for testing the amount of entanglement in quantum systems has played a crucial role in quantum computing and information theory. Here, we study the problem of testing whether an unknown state $|\psi\rangle$ is a matrix product state (MPS) in the property testing model. MPS are a class of physically-relevant quantum states which arise in the study of quantum many-body systems. A quantum state $|\psi_{1,...,n}\rangle$ comprised of $n$ qudits is said to be an MPS of bond dimension $r$ if the reduced density matrix $\psi_{1,...,k}$ has rank $r$ for each $k \in \{1,...,n\}$. When $r=1$, this corresponds to the set of product states. For larger values of $r$, this yields a more expressive class of quantum states, which are allowed to possess limited amounts of entanglement. In the property testing model, one is given $m$ identical copies of $|\psi\rangle$, and the goal is to determine whether $|\psi\rangle$ is an MPS of bond dimension $r$ or whether $|\psi\rangle$ is far from all such states. For the case of product states, we study the product test, a simple two-copy test previously analyzed by Harrow and Montanaro (FOCS 2010), and a key ingredient in their proof that $\mathsf{QMA(2)}=\mathsf{QMA}(k)$ for $k \geq 2$. We give a new and simpler analysis of the product test which achieves an optimal bound for a wide range of parameters, answering open problems of Harrow and Montanaro (FOCS 2010) and Montanaro and de Wolf (2016). For the case of $r\geq 2$, we give an efficient algorithm for testing whether $|\psi\rangle$ is an MPS of bond dimension $r$ using $m = O(n r^2)$ copies, independent of the dimensions of the qudits, and we show that $\Omega(n^{1/2})$ copies are necessary for this task. This lower bound shows that a dependence on the number of qudits $n$ is necessary, in sharp contrast to the case of product states where a constant number of copies suffices.

In this paper, we investigate the graphs in which all balls are convex and the groups acting on them geometrically (which we call CB-graphs and CB-groups). These graphs have been introduced and characterized by Soltan and Chepoi (1983) and Farber and Jamison (1987). CB-graphs and CB-groups generalize systolic (alias bridged) and weakly systolic graphs and groups, which play an important role in geometric group theory. We present metric and local-to-global characterizations of CB-graphs. Namely, we characterize CB-graphs $G$ as graphs whose triangle-pentagonal complexes $X(G)$ are simply connected and balls of radius at most $3$ are convex. Similarly to systolic and weakly systolic graphs, we prove a dismantlability result for CB-graphs $G$: we show that their squares $G^2$ are dismantlable. This implies that the Rips complexes of CB-graphs are contractible. Finally, we adapt and extend the approach of Januszkiewicz and Swiatkowski (2006) for systolic groups and of Chalopin et al. (2020) for Helly groups, to show that the CB-groups are biautomatic.

We propose a scalable Gromov-Wasserstein learning (S-GWL) method and establish a novel and theoretically-supported paradigm for large-scale graph analysis. The proposed method is based on the fact that Gromov-Wasserstein discrepancy is a pseudometric on graphs. Given two graphs, the optimal transport associated with their Gromov-Wasserstein discrepancy provides the correspondence between their nodes and achieves graph matching. When one of the graphs has isolated but self-connected nodes ($i.e.$, a disconnected graph), the optimal transport indicates the clustering structure of the other graph and achieves graph partitioning. Using this concept, we extend our method to multi-graph partitioning and matching by learning a Gromov-Wasserstein barycenter graph for multiple observed graphs; the barycenter graph plays the role of the disconnected graph, and since it is learned, so is the clustering. Our method combines a recursive $K$-partition mechanism with a regularized proximal gradient algorithm, whose time complexity is $\mathcal{O}(K(E+V)\log_K V)$ for graphs with $V$ nodes and $E$ edges. To our knowledge, our method is the first attempt to make Gromov-Wasserstein discrepancy applicable to large-scale graph analysis and unify graph partitioning and matching into the same framework. It outperforms state-of-the-art graph partitioning and matching methods, achieving a trade-off between accuracy and efficiency.

北京阿比特科技有限公司