亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Devising schemes for testing the amount of entanglement in quantum systems has played a crucial role in quantum computing and information theory. Here, we study the problem of testing whether an unknown state $|\psi\rangle$ is a matrix product state (MPS) in the property testing model. MPS are a class of physically-relevant quantum states which arise in the study of quantum many-body systems. A quantum state $|\psi_{1,...,n}\rangle$ comprised of $n$ qudits is said to be an MPS of bond dimension $r$ if the reduced density matrix $\psi_{1,...,k}$ has rank $r$ for each $k \in \{1,...,n\}$. When $r=1$, this corresponds to the set of product states. For larger values of $r$, this yields a more expressive class of quantum states, which are allowed to possess limited amounts of entanglement. In the property testing model, one is given $m$ identical copies of $|\psi\rangle$, and the goal is to determine whether $|\psi\rangle$ is an MPS of bond dimension $r$ or whether $|\psi\rangle$ is far from all such states. For the case of product states, we study the product test, a simple two-copy test previously analyzed by Harrow and Montanaro (FOCS 2010), and a key ingredient in their proof that $\mathsf{QMA(2)}=\mathsf{QMA}(k)$ for $k \geq 2$. We give a new and simpler analysis of the product test which achieves an optimal bound for a wide range of parameters, answering open problems of Harrow and Montanaro (FOCS 2010) and Montanaro and de Wolf (2016). For the case of $r\geq 2$, we give an efficient algorithm for testing whether $|\psi\rangle$ is an MPS of bond dimension $r$ using $m = O(n r^2)$ copies, independent of the dimensions of the qudits, and we show that $\Omega(n^{1/2})$ copies are necessary for this task. This lower bound shows that a dependence on the number of qudits $n$ is necessary, in sharp contrast to the case of product states where a constant number of copies suffices.

相關內容

We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

Probabilistic databases (PDBs) are probability spaces over database instances. They provide a framework for handling uncertainty in databases, as occurs due to data integration, noisy data, data from unreliable sources or randomized processes. Most of the existing theory literature investigated finite, tuple-independent PDBs (TI-PDBs) where the occurrences of tuples are independent events. Only recently, Grohe and Lindner (PODS '19) introduced independence assumptions for PDBs beyond the finite domain assumption. In the finite, a major argument for discussing the theoretical properties of TI-PDBs is that they can be used to represent any finite PDB via views. This is no longer the case once the number of tuples is countably infinite. In this paper, we systematically study the representability of infinite PDBs in terms of TI-PDBs and the related block-independent disjoint PDBs. The central question is which infinite PDBs are representable as first-order views over tuple-independent PDBs. We give a necessary condition for the representability of PDBs and provide a sufficient criterion for representability in terms of the probability distribution of a PDB. With various examples, we explore the limits of our criteria. We show that conditioning on first order properties yields no additional power in terms of expressivity. Finally, we discuss the relation between purely logical and arithmetic reasons for (non-)representability.

Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4

We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.

SVD (singular value decomposition) is one of the basic tools of machine learning, allowing to optimize basis for a given matrix. However, sometimes we have a set of matrices $\{A_k\}_k$ instead, and would like to optimize a single common basis for them: find orthogonal matrices $U$, $V$, such that $\{U^T A_k V\}$ set of matrices is somehow simpler. For example DCT-II is orthonormal basis of functions commonly used in image/video compression - as discussed here, this kind of basis can be quickly automatically optimized for a given dataset. While also discussed gradient descent optimization might be computationally costly, there is proposed CSVD (common SVD): fast general approach based on SVD. Specifically, we choose $U$ as built of eigenvectors of $\sum_i (w_k)^q (A_k A_k^T)^p$ and $V$ of $\sum_k (w_k)^q (A_k^T A_k)^p$, where $w_k$ are their weights, $p,q>0$ are some chosen powers e.g. 1/2, optionally with normalization e.g. $A \to A - rc^T$ where $r_i=\sum_j A_{ij}, c_j =\sum_i A_{ij}$.

We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system+bath) is held in canonical thermal equilibrium by weak coupling with a "super-bath". Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long-range interaction systems.

The Koopman operator is beneficial for analyzing nonlinear and stochastic dynamics; it is linear but infinite-dimensional, and it governs the evolution of observables. The extended dynamic mode decomposition (EDMD) is one of the famous methods in the Koopman operator approach. The EDMD employs a data set of snapshot pairs and a specific dictionary to evaluate an approximation for the Koopman operator, i.e., the Koopman matrix. In this study, we focus on stochastic differential equations, and a method to obtain the Koopman matrix is proposed. The proposed method does not need any data set, which employs the original system equations to evaluate some of the targeted elements of the Koopman matrix. The proposed method comprises combinatorics, an approximation of the resolvent, and extrapolations. Comparisons with the EDMD are performed for a noisy van der Pol system. The proposed method yields reasonable results even in cases wherein the EDMD exhibits a slow convergence behavior.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of $n^{\tilde{O}(1/\epsilon^4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the $L_1$ and EMD distance measures. A key step in the analysis is a novel characterization of concentration and anti-concentration properties of a distribution whose low-degree moments approximately match those of a Gaussian. We also use tools from polynomial approximation theory. In contrast, we show strong lower bounds on the combined run-times of tester-learner pairs for the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Through these lower bounds we exhibit natural problems where there is a dramatic gap between standard agnostic learning run-time and the run-time of the best tester-learner pair.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

北京阿比特科技有限公司